TitleA Measure Theoretical Approach to Quantum Stochastic Processes
Author(s)Waldenfels, Wilhelm
PublicationBerlin, Heidelberg, Springer Berlin Heidelberg, 2014.
DescriptionXVII, 228 p : online resource
Abstract NoteThis monograph takes as starting point that abstract quantum stochastic processes can be understood as a quantum field theory in one space and in one time coordinate. As a result it is appropriate to represent operators as power series of creation and annihilation operators in normal-ordered form, which can be achieved using classical measure theory. ?? Considering in detail four basic examples (e.g. a two-level atom coupled to a heat bath of oscillators), in each case the Hamiltonian of the associated one-parameter strongly continuous group is determined and the spectral decomposition is explicitly calculated in the form of generalized eigen-vectors. ?? Advanced topics include the theory of the Hudson-Parthasarathy equation and the amplified oscillator problem. To that end, a chapter on white noise calculus has also been included
Keyword(s)1. EBOOK 2. EBOOK - SPRINGER 3. Mathematical Methods in Physics 4. MATHEMATICAL PHYSICS 5. PHYSICS 6. QUANTUM PHYSICS
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I08437     On Shelf