TitleSpectral Approach to Transport Problems in Two-Dimensional Disordered Lattices : Physical Interpretation and Applications
Author(s)Kostadinova, Evdokiya Georgieva
PublicationCham, Springer International Publishing, 2018.
DescriptionXIII, 107 p. 39 illus., 36 illus. in color : online resource
Abstract NoteThis thesis introduces the spectral approach to transport problems in infinite disordered systems characterized by Anderson-type Hamiltonians. The spectral approach determines (with probability one) the existence of extended states for nonzero disorder in infinite lattices of any dimension and geometry. Here, the author focuses on the critical 2D case, where previous numerical and experimental results have shown disagreement with theory. Not being based on scaling theory, the proposed method avoids issues related to boundary conditions and provides an alternative approach to transport problems where interaction with various types of disorder is considered. Beginning with a general overview of Anderson-type transport problems and their relevance to physical systems, it goes on to discuss in more detail the most relevant theoretical, numerical, and experimental developments in this field of research. The mathematical formulation of the innovative spectral approach is introduced together with a physical interpretation and discussion of its applicability to physical systems, followed by a numerical study of delocalization in the 2D disordered honeycomb, triangular, and square lattices. Transport in the 2D honeycomb lattice with substitutional disorder is investigated employing a spectral analysis of the quantum percolation problem. Next, the applicability of the method is extended to the classical regime, with an examination of diffusion of lattice waves in 2D disordered complex plasma crystals, along with discussion of proposed future developments in the study of complex transport problems using spectral theory
ISBN,Price9783030022129
Keyword(s)1. CONDENSED MATTER 2. CONDENSED MATTER PHYSICS 3. EBOOK 4. EBOOK - SPRINGER 5. Mathematical Methods in Physics 6. MATHEMATICAL PHYSICS 7. PARTIAL DIFFERENTIAL EQUATIONS 8. PHYSICS 9. PLASMA (IONIZED GASES) 10. PLASMA PHYSICS 11. STATISTICAL PHYSICS 12. Statistical Physics and Dynamical Systems
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I09372     On Shelf