TitleInterferometry with Interacting Bose-Einstein Condensates in a Double-Well Potential
Author(s)Berrada, Tarik
PublicationCham, Springer International Publishing, 2016.
DescriptionXIX, 229 p. 89 illus., 67 illus. in color : online resource
Abstract NoteThis thesis demonstrates a full Mach???Zehnder interferometer with interacting Bose???Einstein condensates confined on an atom chip. It relies on the coherent manipulation of atoms trapped in a magnetic double-well potential, for which the author developed a novel type of beam splitter. Particle-wave duality enables the construction of interferometers for matter waves, which complement optical interferometers in precision measurement devices, both for technological applications and fundamental tests. This requires the development of atom-optics analogues to beam splitters, phase shifters and recombiners. Particle interactions in the Bose???Einstein condensate lead to a nonlinearity, absent in photon optics. This is exploited to generate a non-classical state with reduced atom-number fluctuations inside the interferometer. This state is then used to study the interaction-induced dephasing of the quantum superposition. The resulting coherence times are found to be a factor of three longer than expected for coherent states, highlighting the potential of entanglement as a resource for quantum-enhanced metrology
ISBN,Price9783319272337
Keyword(s)1. Condensed materials 2. EBOOK 3. EBOOK - SPRINGER 4. LOW TEMPERATURE PHYSICS 5. LOW TEMPERATURES 6. Phase transformations (Statistical physics) 7. QUANTUM COMPUTERS 8. Quantum Gases and Condensates 9. Quantum Information Technology, Spintronics 10. SPINTRONICS
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I09653     On Shelf