TitleStudy of Quark Gluon Plasma By Particle Correlations in Heavy Ion Collisions
Author(s)Yi, Li
PublicationNew York, NY, Springer New York, 2016.
DescriptionXVI, 83 p. 54 illus., 42 illus. in color : online resource
Abstract NoteThis thesis covers several important topics relevant to our understanding of quark-gluon plasma. It describes measurement of the third-order harmonic flow using two-particle correlations and isolation of flow and non-flow contributions to particle correlations in gold-gold collisions. The work also investigates long-range longitudinal correlations in small systems of deuteron-gold collisions. The former is related to the hydrodynamic transport properties of the quark-gluon plasma created in gold-gold collisions. The latter pertains to the question whether hydrodynamics is applicable to small systems, such as deuteron-gold collisions, and whether the quark-gluon plasma can be formed in those small-system collisions. The work presented in this thesis was conducted with the STAR experiment at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory, where the center-of-mass energy of both collision systems was a factor of 100 larger than the rest mass of the colliding nuclei. The results contained in this thesis are highly relevant to our quest for deeper understanding of quantum chromodynamics. The results obtained challenge the interpretation of previous works from several other experiments on small systems, and provoke a fresh look at the physics of hydrodynamics and particle correlations pertinent to high energy nuclear collisions
ISBN,Price9781493964871
Keyword(s)1. EBOOK 2. EBOOK - SPRINGER 3. Fluid- and Aerodynamics 4. FLUIDS 5. Heavy ions 6. NUCLEAR PHYSICS 7. Nuclear Physics, Heavy Ions, Hadrons 8. Particle acceleration 9. Particle Acceleration and Detection, Beam Physics 10. Quantum Field Theories, String Theory 11. QUANTUM FIELD THEORY 12. STRING THEORY
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I10066     On Shelf