

Click the serial number on the left to view the details of the item. 
# 
Author  Title  Accn#  Year  Item Type  Claims 
1 
Cicogna, Giampaolo 
Exercises and Problems in Mathematical Methods of Physics 
I09803 
2018 
eBook 

2 
Nahin, Paul J 
Inside Interesting Integrals 
I09510 
2020 
eBook 

3 
Cicogna, Giampaolo 
Exercises and Problems in Mathematical Methods of Physics 
I08828 
2020 
eBook 

4 
Gogolin, A. O 
Lectures on Complex Integration 
I08010 
2014 
eBook 

5 
Cicogna, Giampaolo 
Metodi matematici della Fisica 
I07356 
2015 
eBook 

6 
Cicogna, Giampaolo 
Metodi matematici della Fisica 
I06219 
2008 
eBook 

7 
Doktorov, Evgeny V 
A Dressing Method in Mathematical Physics 
I05617 
2007 
eBook 

8 
B??lair, Jacques 
Fractal Geometry and Analysis 
I04505 
1991 
eBook 

9 
Gauthier, Paul M 
Complex Potential Theory 
I02935 
1994 
eBook 

10 
Schlomiuk, Dana 
Bifurcations and Periodic Orbits of Vector Fields 
I01719 
1993 
eBook 


1.


Title  Exercises and Problems in Mathematical Methods of Physics 
Author(s)  Cicogna, Giampaolo 
Publication  Cham, Springer International Publishing, 2018. 
Description  X, 182 p. 8 illus : online resource 
Abstract Note  This book presents exercises and problems in the mathematical methods of physics with the aim of offering undergraduate students an alternative way to explore and fully understand the mathematical notions on which modern physics is based. The exercises and problems are proposed not in a random order but rather in a sequence that maximizes their educational value. Each section and subsection starts with exercises based on first definitions, followed by groups of problems devoted to intermediate and, subsequently, more elaborate situations. Some of the problems are unavoidably "routine", but others bring to the forenontrivial properties that are often omitted or barely mentioned in textbooks. There are also problems where the reader is guided to obtain important results that are usually stated in textbooks without complete proofs. In all, some 350 solved problems covering all mathematical notions useful to physics are included. While the book is intended primarily for undergraduate students of physics, students of mathematics, chemistry, and engineering, as well as their teachers, will also find it of value. 
ISBN,Price  9783319761657 
Keyword(s)  1. EBOOK
2. EBOOK  SPRINGER
3. FOURIER ANALYSIS
4. Functions of a Complex Variable
5. FUNCTIONS OF COMPLEX VARIABLES
6. GROUP THEORY
7. Group Theory and Generalizations
8. INTEGRAL TRANSFORMS
9. Integral Transforms, Operational Calculus
10. Mathematical Methods in Physics
11. Operational calculus
12. OPERATOR THEORY
13. PHYSICS

Item Type  eBook 
MultiMedia Links
Please Click here for eBook
Circulation Data
Accession#  
Call#  Status  Issued To  Return Due On  Physical Location 
I09803 


On Shelf 




2.


Title  Inside Interesting Integrals : A Collection of Sneaky Tricks, Sly Substitutions, and Numerous Other Stupendously Clever, Awesomely Wicked, and Devilishly Seductive Maneuvers for Computing Hundreds of Perplexing Definite Integrals From Physics, Engineering, and Mathematics (Plus Numerous Challenge Problems with Complete, Detailed Solutions) 
Author(s)  Nahin, Paul J 
Publication  Cham, Springer International Publishing, 2020. 
Description  XLVII, 503 p. 48 illus : online resource 
Abstract Note  What???s the point of calculating definite integrals since you can???t possibly do them all? What makes doing the specific integrals in this book of value aren???t the specific answers we???ll obtain, but rather the methods we???ll use in obtaining those answers; methods you can use for evaluating the integrals you will encounter in the future. This book, now in its second edition, is written in a lighthearted manner for students who have completed the first year of college or high school AP calculus and have just a bit of exposure to the concept of a differential equation. Every result is fully derived. If you are fascinated by definite integrals, then this is a book for you. New material in the second edition includes 25 new challenge problems and solutions, 25 new worked examples, simplified derivations, and additional historical discussion. 
ISBN,Price  9783030437886 
Keyword(s)  1. APPLIED MATHEMATICS
2. EBOOK
3. EBOOK  SPRINGER
4. ENGINEERING MATHEMATICS
5. Functions of a Complex Variable
6. FUNCTIONS OF COMPLEX VARIABLES
7. FUNCTIONS OF REAL VARIABLES
8. Mathematical and Computational Engineering
9. Mathematical Methods in Physics
10. PHYSICS
11. REAL FUNCTIONS
12. Sequences (Mathematics)
13. Sequences, Series, Summability

Item Type  eBook 
MultiMedia Links
Please Click here for eBook
Circulation Data
Accession#  
Call#  Status  Issued To  Return Due On  Physical Location 
I09510 


On Shelf 




3.


Title  Exercises and Problems in Mathematical Methods of Physics 
Author(s)  Cicogna, Giampaolo 
Publication  Cham, Springer International Publishing, 2020. 
Description  XII, 218 p. 9 illus : online resource 
Abstract Note  This book is the second edition, whose original mission was to offer a new approach for students wishing to better understand the mathematical tenets that underlie the study of physics. This mission is retained in this book. The structure of the book is one that keeps pedagogical principles in mind at every level. Not only are the chapters sequenced in such a way as to guide the reader down a clear path that stretches throughout the book, but all individual sections and subsections are also laid out so that the material they address becomes progressively more complex along with the reader's ability to comprehend it. This book not only improves upon the first in many details, but it also fills in some gaps that were left open by this and other books on similar topics. The 350 problems presented here are accompanied by answers which now include a greater amount of detail and additional guidance for arriving at the solutions. In this way, the mathematical underpinnings of the relevant physics topics are made as easy to absorb as possible. 
ISBN,Price  9783030594725 
Keyword(s)  1. EBOOK
2. EBOOK  SPRINGER
3. FOURIER ANALYSIS
4. Functions of a Complex Variable
5. FUNCTIONS OF COMPLEX VARIABLES
6. GROUP THEORY
7. Group Theory and Generalizations
8. INTEGRAL TRANSFORMS
9. Integral Transforms, Operational Calculus
10. Mathematical Methods in Physics
11. Operational calculus
12. OPERATOR THEORY
13. PHYSICS

Item Type  eBook 
MultiMedia Links
Please Click here for eBook
Circulation Data
Accession#  
Call#  Status  Issued To  Return Due On  Physical Location 
I08828 


On Shelf 




4.


Title  Lectures on Complex Integration 
Author(s)  Gogolin, A. O;Tsitsishvili, Elena G;Komnik, Andreas 
Publication  Cham, Springer International Publishing, 2014. 
Description  IX, 285 p. 64 illus : online resource 
Abstract Note  The theory of complex functions is a strikingly beautiful and powerful area of mathematics. Some particularly fascinating examples are seemingly complicated integrals which are effortlessly computed after reshaping them into integrals along contours, as well as apparently difficult differential and integral equations, which can be elegantly solved using similar methods. To use them is sometimes routine but in many cases it borders on an art. The goal of the book is to introduce the reader to this beautiful area of mathematics and to teach him or her how to use these methods to solve a variety of problems ranging from computation of integrals to solving difficult integral equations. This is done with a help of numerous examples and problems with detailed solutions 
ISBN,Price  9783319002125 
Keyword(s)  1. EBOOK
2. EBOOK  SPRINGER
3. Functions of a Complex Variable
4. FUNCTIONS OF COMPLEX VARIABLES
5. Mathematical Applications in the Physical Sciences
6. MATHEMATICAL PHYSICS
7. Theoretical, Mathematical and Computational Physics

Item Type  eBook 
MultiMedia Links
Please Click here for eBook
Circulation Data
Accession#  
Call#  Status  Issued To  Return Due On  Physical Location 
I08010 


On Shelf 




5.


Title  Metodi matematici della Fisica 
Author(s)  Cicogna, Giampaolo 
Publication  Milano, Springer Milan, 2015. 
Description  X, 258 pagg. 22 figg : online resource 
Abstract Note  Questo libro trae la sua origine dagli appunti preparati per le lezioni di Metodi Matematici della Fisica tenute al Dipartimento di Fisica dell'Universit?? di Pisa, e via via sistemati, raffinati e aggiornati nel corso di molti anni di insegnamento. L'intento generale ?? di fornire una presentazione per quanto possibile semplice e diretta dei metodi matematici basilari e rilevanti per la Fisica. Anche allo scopo di mantenere questo testo entro i limiti di un manuale di dimensioni contenute e di agevole consultazione, sono stati spesso sacrificati i dettagli tecnici delle dimostrazioni matematiche (o anzi le dimostrazioni per intero) e anche i formalismi eccessivi, che tendono a nascondere la vera natura dei problemi. Al contrario, si ?? cercato di evidenziare ??? per quanto possibile ??? le idee sottostanti e le motivazioni che conducono ai diversi procedimenti. L'obiettivo principale e quello di mettere in condizione chi ha letto questo libro di acquisire gli strumenti adatti e le conoscenze di base che gli permettano di affrontare senza difficolt?? anche testi pi?? avanzati e impegnativi. Questa nuova Edizione conserva la struttura generale della prima Edizione, ma ?? arricchita dall'inserimento di numerosi esempi (e controesempi), con nuove osservazioni e chiarimenti su tutti gli argomenti proposti: Serie di Fourier, Spazi di Hilbert, Operatori lineari, Funzioni di Variabile complessa, Trasformate di Fourier e di Laplace, Distribuzioni. Inoltre, le prime nozioni della Teoria dei Gruppi, delle Algebre di Lie e delle Simmetrie in Fisica (che erano confinate in una Appendice nella Prima Edizione) vengono ora proposte in una forma sensibilmente ampliata, con vari esempi in vista delle applicazioni alla Fisica. In particolare, due nuovi Capitoli sono dedicati allo studio delle propriet?? di simmetria dell'atomo di idrogeno e dell'oscillatore armonico in Meccanica Quantistica 
ISBN,Price  9788847056848 
Keyword(s)  1. EBOOK
2. EBOOK  SPRINGER
3. FOURIER ANALYSIS
4. FUNCTIONAL ANALYSIS
5. Functions of a Complex Variable
6. FUNCTIONS OF COMPLEX VARIABLES
7. GROUP THEORY
8. Group Theory and Generalizations
9. Mathematical Methods in Physics
10. PHYSICS

Item Type  eBook 
MultiMedia Links
Please Click here for eBook
Circulation Data
Accession#  
Call#  Status  Issued To  Return Due On  Physical Location 
I07356 


On Shelf 




6.


Title  Metodi matematici della Fisica 
Author(s)  Cicogna, Giampaolo 
Publication  Milano, Springer Milan, 2008. 
Description  X, 242 pagg : online resource 
Abstract Note  Questo testo trae la sua origine da miei vecchi appunti, preparati per il corso di Metodi Matematici della Fisica e via via sistemati, raffinati e aggiornati nel corso di molti anni di insegnamento. L'obiettivo???? stato sempre quello di fornire una presentazione per quanto possibile semplice e diretta dei metodi matematici rilevanti per la Fisica: serie di Fourier, spazi di Hilbert, operatori lineari, funzioni di variabile complessa, trasformata di Fourier e di Laplace, distribuzioni. Oltre a questi argomenti di base, viene presentata, in Appendice, una breve introduzione alle prime nozioni di teoria dei gruppi, delle algebre di Lie e delle simmetrie in vista delle loro applicazioni alla Fisica. Anche allo scopo di mantenere il libro nei limiti ragionevoli di un manuale di dimensioni contenute e di agevole consultazione, sono stati spesso tralasciati i dettagli tecnici delle dimostrazioni matematiche (o anzi le dimostrazioni per intero) e tutti i formalismi eccessivi che spesso nascondono la vera natura del problema e del metodo necessario per affrontarlo. Al contrario, si???? cercato di chiarire le "idee sottostanti" ai diversi procedimenti; anche le applicazioni proposte sono quelle che meglio e piu' direttamente illustrano i procedimenti stessi, tralasciando altre applicazioni (Meccanica Quantistica, Elettromagnetismo, Equazioni alle Derivate Parziali, Funzioni Speciali, tanto per fare qualche esempio) che sconfinano in differenti discipline. Riassumendo, lo scopo principale e' quello di mettere in condizione chi legge questo libro di acquisire le conoscenze di base che gli permettano di affrontare senza difficolt?? anche testi ben pi?? avanzati e impegnativi 
ISBN,Price  9788847008342 
Keyword(s)  1. EBOOK
2. EBOOK  SPRINGER
3. FOURIER ANALYSIS
4. FUNCTIONAL ANALYSIS
5. Functions of a Complex Variable
6. FUNCTIONS OF COMPLEX VARIABLES
7. GROUP THEORY
8. Group Theory and Generalizations
9. Mathematical Methods in Physics
10. PHYSICS

Item Type  eBook 
MultiMedia Links
Please Click here for eBook
Circulation Data
Accession#  
Call#  Status  Issued To  Return Due On  Physical Location 
I06219 


On Shelf 




7.


Title  A Dressing Method in Mathematical Physics 
Author(s)  Doktorov, Evgeny V;Leble, Sergey B 
Publication  Dordrecht, Springer Netherlands, 2007. 
Description  XXIV, 383 p : online resource 
Abstract Note  The monograph is devoted to the systematic presentation of the so called "dressing method" for solving differential equations (both linear and nonlinear) of mathematical physics. The essence of the dressing method consists in a generation of new nontrivial solutions of a given equation from (maybe trivial) solution of the same or related equation. The Moutard and Darboux transformations discovered in XIX century as applied to linear equations, the B??cklund transformation in differential geometry of surfaces, the factorization method, the RiemannHilbert problem in the form proposed by Shabat and Zakharov for soliton equations and its extension in terms of the dbar formalism comprise the main objects of the book. Throughout the text, a generally sufficient "linear experience" of readers is exploited, with a special attention to the algebraic aspects of the main mathematical constructions and to practical rules of obtaining new solutions. Various linear equations of classical and quantum mechanics are solved by the Darboux and factorization methods. An extension of the classical Darboux transformations to nonlinear equations in 1+1 and 2+1 dimensions, as well as its factorization are discussed in detail. The applicability of the local and nonlocal RiemannHilbert problembased approach and its generalization in terms of the dbar method are illustrated on various nonlinear equations 
ISBN,Price  9781402061400 
Keyword(s)  1. Applications of Mathematics
2. APPLIED MATHEMATICS
3. CLASSICAL ELECTRODYNAMICS
4. EBOOK
5. EBOOK  SPRINGER
6. ELECTRODYNAMICS
7. ENGINEERING MATHEMATICS
8. Functions of a Complex Variable
9. FUNCTIONS OF COMPLEX VARIABLES
10. Mathematical and Computational Engineering
11. Mathematical Methods in Physics
12. Nonassociative Rings and Algebras
13. Nonassociative rings
14. OPTICS
15. PHYSICS
16. Rings (Algebra)

Item Type  eBook 
MultiMedia Links
Please Click here for eBook
Circulation Data
Accession#  
Call#  Status  Issued To  Return Due On  Physical Location 
I05617 


On Shelf 




8.


Title  Fractal Geometry and Analysis 
Author(s)  B??lair, Jacques;Dubuc, Serge 
Publication  Dordrecht, Springer Netherlands, 1991. 
Description  XV, 472 p. 85 illus : online resource 
Abstract Note  This ASI which was also the 28th session of the Seminaire de mathematiques superieures of the Universite de Montreal  was devoted to Fractal Geometry and Analysis. The present volume is the fruit of the work of this Advanced Study Institute. We were fortunate to have with us Prof. Benoit Mandelbrot  the creator of numerous concepts in Fractal Geometry  who gave a series of lectures on multifractals, iteration of analytic functions, and various kinds of fractal stochastic processes. Different foundational contributions for Fractal Geometry like measure theory, dy?? namical systems, iteration theory, branching processes are recognized. The geometry of fractal sets and the analytical tools used to investigate them provide a unifying theme of this book. The main topics that are covered are then as follows. Dimension Theory. Many definitions of fractional dimension have been proposed, all of which coincide on "regular" objects, but often take different values for a given fractal set. There is ample discussion on piecewise estimates yielding actual values for the most common dimensions (Hausdorff, boxcounting and packing dimensions). The dimension theory is mainly discussed by MendesFrance, Bedford, Falconer, Tricot and Rata. Construction of fractal sets. Scale in variance is a fundamental property of fractal sets 
ISBN,Price  9789401579315 
Keyword(s)  1. EBOOK
2. EBOOK  SPRINGER
3. Functions of a Complex Variable
4. FUNCTIONS OF COMPLEX VARIABLES
5. Mathematical Modeling and Industrial Mathematics
6. MATHEMATICAL MODELS
7. Measure and Integration
8. MEASURE THEORY
9. PROBABILITIES
10. Probability Theory and Stochastic Processes

Item Type  eBook 
MultiMedia Links
Please Click here for eBook
Circulation Data
Accession#  
Call#  Status  Issued To  Return Due On  Physical Location 
I04505 


On Shelf 



 