SLIM21

Sort Order Display Format Items / Page  
 
  Click the serial number on the left to view the details of the item.
 #  AuthorTitleAccn#YearItem Type Claims
1 Manoharan, Praveen Universal Relations for Binary Neutron Star Mergers with Long-lived Remnants I12522 2022 Book  
2 Steinberg, Jonathan Extensions and Restrictions of Generalized Probabilistic Theories I12394 2022 Book  
3 Ticar, Johanna Maria 3D Analysis of the Myocardial Microstructure I10252 2016 eBook  
4 Bartolf, Holger Fluctuation Mechanisms in Superconductors I10225 2016 eBook  
5 W??rl, Matthias Towards Offline PET Monitoring at a Cyclotron-Based Proton Therapy Facility I10136 2016 eBook  
6 Sch??tz, Johannes Attosecond Experiments on Plasmonic Nanostructures I09746 2016 eBook  
7 Z??ller, Nikolas Optimization of Stochastic Heat Engines in the Underdamped Limit I09647 2017 eBook  
8 Nanz, Stefan Toroidal Multipole Moments in Classical Electrodynamics I08734 2016 eBook  
9 Schikora, Sylvia All-Optical Noninvasive Delayed Feedback Control of Semiconductor Lasers I08272 2013 eBook  
10 Schultz, Gerrit Magnetic Resonance Imaging with Nonlinear Gradient Fields I08036 2013 eBook  
(page:1 / 2) [#16]    Next Page   Last Page 

1.    
No image available
TitleUniversal Relations for Binary Neutron Star Mergers with Long-lived Remnants
Author(s)Manoharan, Praveen
PublicationWiesbaden, 1. Imprint: Springer Spektrum 2. Springer Fachmedien Wiesbaden, 2022.
DescriptionXIV, 65 p. 20 illus : online resource
Abstract NoteIn the last 25 years, an extensive body of work has developed various equation of state independent - or (approximately) universal - relations that allow for the inference of neutron star parameters from gravitational wave observations. These works, however, have mostly been focused on singular neutron stars, while our observational efforts at the present, and in the near future, will be focused on binary neutron star (BNS) mergers. In light of these circumstances, the last five years have also given rise to more attempts at developing universal relations that relate BNS pre-merger neutron stars to stellar parameters of the post-merger object, mostly driven by numerical relativity simulations. In this thesis a first attempt at perturbatively deriving universal relations for binary neutron star mergers with long-lived neutron star remnants is presented. The author succeeds in confirming previous results relating pre-merger binary tidal deformabilities to the f-mode frequency of the post-merger object. Combining this result with recent advances of computing the f-mode frequency of fast rotating neutron stars, he also derives a combined relation that relates the pre-merger binary tidal deformability of a BNS to the effective compactness of a long-lived neutron star remnant. Finally, he also proposes a direct relation between these quantities with improved accuracy. About the author Praveen Manoharan is PhD student at T??bingen University, Institute for Theoretical Astrophysics
ISBN,Price9783658368418
Keyword(s)1. ASTRONOMY 2. Astronomy, Cosmology and Space Sciences 3. ASTROPHYSICS 4. EBOOK 5. EBOOK - SPRINGER
Item TypeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I12522     On Shelf    

2.     
No image available
TitleExtensions and Restrictions of Generalized Probabilistic Theories
Author(s)Steinberg, Jonathan
PublicationWiesbaden, 1. Imprint: Springer Spektrum 2. Springer Fachmedien Wiesbaden, 2022.
DescriptionVIII, 79 p. 5 illus : online resource
Abstract NoteGeneralized probabilistic theories (GPTs) allow us to write quantum theory in a purely operational language and enable us to formulate other, vastly different theories. As it turns out, there is no canonical way to integrate the notion of subsystems within the framework of convex operational theories. Sections can be seen as generalization of subsystems and describe situations where not all possible observables can be implemented. Jonathan Steinberg discusses the mathematical foundations of GPTs using the language of Archimedean order unit spaces and investigates the algebraic nature of sections. This includes an analysis of the category theoretic structure and the transformation properties of the state space. Since the Hilbert space formulation of quantum mechanics uses tensor products to describe subsystems, he shows how one can interpret the tensor product as a special type of a section. In addition he applies this concept to quantum theory and compares it with the formulation in the algebraic approach. Afterwards he gives a complete characterization of low dimensional sections of arbitrary quantum systems using the theory of matrix pencils. About the author Jonathan Steinberg studied physics and mathematics at the university of Siegen and obtained his M. Sc. in the field of quantum foundations. Currently he investigates the relation between tensor eigenvalues and the quantification of multipartite entanglement under the tutelage of Prof. Otfried G??hne
ISBN,Price9783658375812
Keyword(s)1. EBOOK 2. EBOOK - SPRINGER 3. Quantum computing 4. QUANTUM INFORMATION 5. QUANTUM PHYSICS
Item TypeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I12394     On Shelf    

3.     
No image available
Title3D Analysis of the Myocardial Microstructure : Determination of Fiber and Sheet Orientations
Author(s)Ticar, Johanna Maria
PublicationWiesbaden, 1. Imprint: Springer Spektrum 2. Springer Fachmedien Wiesbaden, 2016.
DescriptionXV, 76 p. 39 illus. in color : online resource
Abstract NoteThe master thesis of Johanna Maria Ticar reveals high-resolution insights into the myocardial microstructure and illustrates that cardiac muscle fibers are straight, running in parallel with one preferred fiber direction, however, deposits such as fat seem to compromise the regular and compact structure. Second harmonic generation imaging combined with optical tissue clearing is an accurate method for determining the three-dimensional muscle fiber and sheet orientations and hence, allows the calculation of fiber rotation throughout the ventricle wall. Contents ??? Structure of the Human Myocardium ??? Imaging Tools for Fiber Mapping ??? Optical Tissue Clearing ??? Second Harmonic Generation Imaging ??? 3D Reconstruction and Visualization Target Groups ??? Researchers and Students in the field of Biomedical Engineering with a focus on Bioengineering and??Biomechanics ??? Professionals in the field of Biomedicine The Author Johanna Maria Ticar, MSc, studied Biomedical Engineering at Graz University of Technology. Her research interests are the microstructure of the human body, tissue engineering and regenerative medicine, foremost in the field of cardiology
ISBN,Price9783658114244
Keyword(s)1. Biological and Medical Physics, Biophysics 2. Biological Microscopy 3. BIOLOGICAL PHYSICS 4. Biomedicine, general 5. BIOPHYSICS 6. EBOOK 7. EBOOK - SPRINGER 8. MEDICINE 9. MICROSCOPY
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I10252     On Shelf    

4.     
No image available
TitleFluctuation Mechanisms in Superconductors : Nanowire Single-Photon Counters, Enabled by Effective Top-Down Manufacturing
Author(s)Bartolf, Holger
PublicationWiesbaden, 1. Imprint: Springer Spektrum 2. Springer Fachmedien Wiesbaden, 2016.
DescriptionXXI, 328 p. 91 illus., 90 illus. in color : online resource
Abstract NoteHolger Bartolf discusses state-of-the-art detection concepts based on superconducting nanotechnology as well as sophisticated analytical formul?? that model dissipative fluctuation-phenomena in superconducting nanowire single-photon detectors. Such knowledge is desirable for the development of advanced devices which are designed to possess an intrinsic robustness against vortex-fluctuations and it provides the perspective for honorable fundamental science in condensed matter physics. Especially the nanowire detector allows for ultra-low noise detection of signals with single-photon sensitivity and GHz repetition rates. Such devices have a huge potential for future technological impact and might enable unique applications (e.g. high rate interplanetary deep-space data links from Mars to Earth). Contents Superconducting Single-Photon Detectors Nanotechnological Manufacturing; Scale: 10 Nanometer Berezinskii-Kosterlitz Thouless (BKT) Transition, Edge-Barrier, Phase Slips Target Groups Researchers and students of physics in the fields of single-photon devices, nanofabrication, nanophotonics, nanoelectronics and superconductivity Industrial practitioners with focus on nanotechnology and single-photon detectors About the Author Holger Bartolf studied Solid State Physics at the Universities of Karlsruhe and Z??rich. In 2011 he relocated at the Swiss Corporate Research Center of a leading company in power and automation technologies where his current interests focus on the applied R&D of the next generation of power semiconductors
ISBN,Price9783658122461
Keyword(s)1. EBOOK 2. EBOOK - SPRINGER 3. MATHEMATICAL PHYSICS 4. NANOTECHNOLOGY 5. Theoretical, Mathematical and Computational Physics
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I10225     On Shelf    

5.     
No image available
TitleTowards Offline PET Monitoring at a Cyclotron-Based Proton Therapy Facility : Experiments and Monte Carlo Simulations
Author(s)W??rl, Matthias
PublicationWiesbaden, 1. Imprint: Springer Spektrum 2. Springer Fachmedien Wiesbaden, 2016.
DescriptionXV, 86 p. 30 illus., 10 illus. in color : online resource
Abstract NoteMatthias W??rl presents two essential steps to implement offline PET monitoring of proton dose delivery at a clinical facility, namely the setting up of an accurate Monte Carlo model of the clinical beamline and the experimental validation of positron emitter production cross-sections. In the first part, the field size dependence of the dose output is described for scanned proton beams. Both the Monte Carlo and an analytical computational beam model were able to accurately predict target dose, while the latter tends to overestimate dose in normal tissue. In the second part, the author presents PET measurements of different phantom materials, which were activated by the proton beam. The results indicate that for an irradiation with a high number of protons for the sake of good statistics, dead time losses of the PET scanner may become important and lead to an underestimation of positron-emitter production yields. Contents Monte Carlo Modeling of a Clinical Proton Beam Low-Dose Envelope and Field Size Factor PET Activation Studies Target Groups Researchers and students in the field of medical physics with focus on particle therapy Medical physicists at proton therapy facilities The Author Matthias W??rl wrote his Master???s Thesis at the chair of Medical Physics at the Ludwig-Maximilians University Munich. He is now a PhD student at the same department, working on transmission imaging with laser-accelerated ions
ISBN,Price9783658131685
Keyword(s)1. Biological and Medical Physics, Biophysics 2. BIOLOGICAL PHYSICS 3. BIOPHYSICS 4. EBOOK 5. EBOOK - SPRINGER 6. MATHEMATICAL PHYSICS 7. NUCLEAR PHYSICS 8. Particle and Nuclear Physics 9. Theoretical, Mathematical and Computational Physics
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I10136     On Shelf    

6.     
No image available
TitleAttosecond Experiments on Plasmonic Nanostructures : Principles and Experiments
Author(s)Sch??tz, Johannes
PublicationWiesbaden, 1. Imprint: Springer Spektrum 2. Springer Fachmedien Wiesbaden, 2016.
DescriptionXIV, 106 p. 45 illus : online resource
Abstract NoteJohannes Sch??tz presents the first measurements of optical electro-magnetic near-fields around nanostructures with subcycle-resolution. The ability to measure and understand light-matter interactions on the nanoscale is an important component for the development of light-wave-electronics, the control and steering of electron dynamics with the frequency of light, which promises a speed-up by several orders of magnitude compared to conventional electronics. The experiments presented here on metallic nanotips, widely used in experiments and applications, do not only demonstrate the feasibility of attosecond streaking as a unique tool for fundamental studies of ultrafast nanophotonics but also represent a first important step towards this goal. Contents Electron Scattering in Solids Attosecond Streaking from Metal Nanotips Target Groups Lecturers and students of physics, especially in the area of nanophotonics and attosecond physics About the Author Johannes Sch??tz received his Master's degree in physics and currently works as a PhD student in the field of ultrafast nanophotonics at the Max Planck Institute of Quantum Optics Garching
ISBN,Price9783658137137
Keyword(s)1. EBOOK 2. EBOOK - SPRINGER 3. LASERS 4. Nanoscale science 5. Nanoscale Science and Technology 6. NANOSCIENCE 7. Nanostructures 8. Optics, Lasers, Photonics, Optical Devices 9. PHOTONICS
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I09746     On Shelf    

7.     
No image available
TitleOptimization of Stochastic Heat Engines in the Underdamped Limit
Author(s)Z??ller, Nikolas
PublicationWiesbaden, 1. Imprint: Springer Spektrum 2. Springer Fachmedien Wiesbaden, 2017.
DescriptionIX, 91 p. 33 illus : online resource
Abstract NoteNikolas Z??ller examines the working principles and the underlying theoretical foundations of a microscopic heat engine. In particular, he investigates the system???s stochastic dynamics in the underdamped regime which has hardly been studied in the past, but will be experimentally feasible in the near future due to recent technological developments. Emphasis is put on the maximization of the engine???s efficiency at maximum power through optimization of the driving protocol. In addition, possible experimental realizations of a microscopic heat engine are discussed. Contents ??? Stochastic Dynamics ??? Stochastic Heat Engines in the Overdamped and Underdamped Regime ??? Experimental Realization of a Stochastic Heat Engine ??? Entropy Production in Inhomogeneous Thermal Environments Target Groups ??? Lecturers and students of physics, mathematics, especially physical engineering ??? Experimental physicists The Author Nikolas Z??ller is currently working as a research associate at the Institute for Urban Futures at the Applied University of Potsdam where he applies concepts from theoretical physics and statistics to sociological problems
ISBN,Price9783658163501
Keyword(s)1. Atomic, Molecular, Optical and Plasma Physics 2. ATOMS 3. EBOOK 4. EBOOK - SPRINGER 5. MATHEMATICAL PHYSICS 6. PHYSICS 7. PROBABILITIES 8. Probability Theory and Stochastic Processes 9. Theoretical, Mathematical and Computational Physics
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I09647     On Shelf    

8.     
No image available
TitleToroidal Multipole Moments in Classical Electrodynamics : An Analysis of their Emergence and Physical Significance
Author(s)Nanz, Stefan
PublicationWiesbaden, 1. Imprint: Springer Spektrum 2. Springer Fachmedien Wiesbaden, 2016.
DescriptionXI, 87 p. 4 illus : online resource
Abstract NoteStefan Nanz investigates the necessity for three multipole families in classical electrodynamics. He shows that by imposing symmetry and parity constraints, it is sufficient to deal with only two multipole families. This implies that the toroidal multipole moments do not represent an independent multipole family, and they only emerge in the long-wavelength limit. Contents Symmetry Considerations of Charge-Current Distributions Multipole Expansion of the Electromagnetic Potentials and Fields Conclusions for the Physical Significance of Toroidal Multipole Moments Target Groups Researchers and students in the field of physics Practitioners in the field of optics and photonics The Author Stefan Nanz studied physics at Karlsruhe Institute of Technology and wrote his Master Thesis in the group of Prof. Dr. Carsten Rockstuhl. There, he is now a PhD student and working on tailored disorder of scattering interfaces and photon management in solar cells
ISBN,Price9783658125493
Keyword(s)1. Atomic, Molecular, Optical and Plasma Physics 2. ATOMS 3. EBOOK 4. EBOOK - SPRINGER 5. MATHEMATICAL PHYSICS 6. NUCLEAR PHYSICS 7. Particle and Nuclear Physics 8. PHYSICS 9. Theoretical, Mathematical and Computational Physics
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I08734     On Shelf    

9.     
No image available
TitleAll-Optical Noninvasive Delayed Feedback Control of Semiconductor Lasers
Author(s)Schikora, Sylvia
PublicationWiesbaden, 1. Imprint: Springer Spektrum 2. Springer Fachmedien Wiesbaden, 2013.
DescriptionXIX, 118 p. 59 illus : online resource
Abstract NoteThe stabilization of unstable states hidden in the dynamics of a system, in particular the control of chaos, has received much attention in the last years. Sylvia Schikora for the first time applies a well-known control method called delayed feedback control entirely in the all-optical domain. A multisection semiconductor laser receives optical feedback from an external Fabry-Perot interferometer. The control signal is a phase-tunable superposition of the laser signal and provokes the laser to operate in an otherwise unstable periodic state with a period equal to the time delay. The control is noninvasive, because the reflected signal tends to zero when the target state is reached. ?? The work has been awarded the Carl-Ramsauer-Prize 2012. ?? Contents ?????????????????? All-Optical Control Setup ?????????????????? Stable States with Resonant Fabry-Perot Feedback ?????????????????? Control of an Unstable Stationary State and of Unstable Selfpulsations ?????????????????? Controlling Chaos ?????????????????? Control of a Torsionfree Orbit ?? Target Groups ?? ?????????????????? Researchers and students of nonlinear dynamics or semiconductor laser technology, interested in the application of control synchronization in the GHz range ?????????????????? Practitioners in the field of optical telecommunication ?? ?? The author Dr. Sylvia Schikora completed her doctoral thesis on ultrafast noninvasive control of semiconductor lasers at the Department of Physics, Humboldt University of Berlin. She currently works at Humboldt University as a postdoctoral researcher with a focus on optical metrology
ISBN,Price9783658015404
Keyword(s)1. EBOOK 2. EBOOK - SPRINGER 3. LASERS 4. Optics, Lasers, Photonics, Optical Devices 5. PHOTONICS
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I08272     On Shelf    

10.    
No image available
TitleMagnetic Resonance Imaging with Nonlinear Gradient Fields : Signal Encoding and Image Reconstruction
Author(s)Schultz, Gerrit
PublicationWiesbaden, 1. Imprint: Springer Spektrum 2. Springer Fachmedien Wiesbaden, 2013.
DescriptionXVI, 333 p. 93 illus., 27 illus. in color : online resource
Abstract NoteWithin the past few decades magnetic resonance imaging has become one of the most important imaging modalities in medicine. For a reliable diagnosis of pathologies further technological improvements are of primary importance. This text deals with a radically new approach of image encoding: The fundamental principle of gradient linearity is challenged by investigating the possibilities of acquiring anatomical images with the help of nonlinear gradient fields. Besides a thorough theoretical analysis with a focus on signal encoding and image reconstruction, initial hardware implementations are tested using phantom as well as in-vivo measurements. Several applications are presented that give an impression about the implications that this technological advancement may have for future medical diagnostics. ?? Contents n?? Image Reconstruction in MRI n?? Nonlinear Gradient Encoding: PatLoc Imaging n?? Presentation of Initial Hardware Designs n?? Basics of Signal Encoding and Image Reconstruction in PatLoc Imaging n?? Direct and Iterative Reconstruction Techniques ?? ?? Target Groups ?????????????????? Researchers and students in the fields of physics, mathematics, medicine and engineering with interest in imaging technology. ?????????????????? Industrial practitioners with focus on medical imaging. ?? About the Author Gerrit Schultz studied Physics and Mathematics at the Universities of Heidelberg and Geneva. He joined the Medical Physics Group at the University Medical Center in Freiburg in 2007, where he is currently working as a postdoctoral researcher. ??
ISBN,Price9783658011345
Keyword(s)1. Diagnostic Radiology 2. EBOOK 3. EBOOK - SPRINGER 4. ELECTRONICS 5. Electronics and Microelectronics, Instrumentation 6. Measurement Science and Instrumentation 7. Measurement?????? 8. MICROELECTRONICS 9. PHYSICAL MEASUREMENTS 10. Radiology
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I08036     On Shelf    

(page:1 / 2) [#16]    Next Page   Last Page