SLIM21

Sort Order Display Format Items / Page  
 
  Click the serial number on the left to view the details of the item.
 #  AuthorTitleAccn#YearItem Type Claims
1 Scherer, Philipp O.J Computational Physics I10138 2017 eBook  
2 Scherer, Philipp O.J Theoretical Molecular Biophysics I09798 2017 eBook  
3 Scherer, Philipp O.J Computational Physics I07911 2010 eBook  
4 Scherer, Philipp O.J Theoretical Molecular Biophysics I07736 2010 eBook  
(page:1 / 1) [#4]     

1.    
No image available
TitleComputational Physics : Simulation of Classical and Quantum Systems
Author(s)Scherer, Philipp O.J
PublicationCham, Springer International Publishing, 2017.
DescriptionXXIV, 633 p. 306 illus., 50 illus. in color : online resource
Abstract NoteThis textbook presents basic numerical methods and applies them to a large variety of physical models in multiple computer experiments. Classical algorithms and more recent methods are explained. Partial differential equations are treated generally comparing important methods, and equations of motion are solved by a large number of simple as well as more sophisticated methods. Several modern algorithms for quantum wavepacket motion are compared. The first part of the book discusses the basic numerical methods, while the second part simulates classical and quantum systems. Simple but non-trivial examples from a broad range of physical topics offer readers insights into the numerical treatment but also the simulated problems. Rotational motion is studied in detail, as are simple quantum systems. A two-level system in an external field demonstrates elementary principles from quantum optics and simulation of a quantum bit. Principles of molecular dynamics are shown. Modern bounda ry element methods are presented in addition to standard methods, and waves and diffusion processes are simulated comparing the stability and efficiency of different methods. A large number of computer experiments is provided, which can be tried out even by readers with no programming skills. Exercises in the applets complete the pedagogical treatment in the book. In the third edition Monte Carlo methods and random number generation have been updated taking recent developments into account. Krylov-space methods for eigenvalue problems are discussed in much more detail. The wavelet transformation method has been included as well as simple applications to continuum mechanics and convection-diffusion problems. Lastly, elementary quantum many-body problems demonstrate the application of variational and Monte-Carlo methods.??
ISBN,Price9783319610887
Keyword(s)1. APPLIED MATHEMATICS 2. Chemistry, Physical and theoretical 3. EBOOK 4. EBOOK - SPRINGER 5. ENGINEERING MATHEMATICS 6. Mathematical and Computational Engineering 7. Mathematical Applications in the Physical Sciences 8. MATHEMATICAL PHYSICS 9. Numerical and Computational Physics, Simulation 10. PHYSICS 11. Theoretical and Computational Chemistry
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I10138     On Shelf    

2.     
No image available
TitleTheoretical Molecular Biophysics
Author(s)Scherer, Philipp O.J;Fischer, Sighart F
PublicationBerlin, Heidelberg, Springer Berlin Heidelberg, 2017.
DescriptionXVI, 513 p. 226 illus., 27 illus. in color : online resource
Abstract NoteThis book gives an introduction to molecular biophysics. It starts from material properties at equilibrium related to polymers, dielectrics and membranes. Electronic spectra are developed for the understanding of elementary dynamic processes in photosynthesis including proton transfer and dynamics of molecular motors. Since the molecular structures of functional groups of bio-systems were resolved, it has become feasible to develop a theory based on the quantum theory and statistical physics with emphasis on the specifics of the high complexity of bio-systems. This introduction to molecular aspects of the field focuses on solvable models. Elementary biological processes provide as special challenge the presence of partial disorder in the structure which does not destroy the basic reproducibility of the processes. Apparently the elementary molecular processes are organized in a way to optimize the efficiency. Learning from nature by means exploring the relation between structure and function may even help to build better artificial solar cells. The reader is exposed to basic concepts in modern biophysics, such as entropic forces, phase separation, potential of mean force, electron and proton transfer, heterogeneous reactions, coherent and incoherent energy transfer as well as molecular motors. Basic knowledge in classical and Quantum mechanics, electrostatics and statistical physics is desirable. Simplified models are presented which can be solved in limited cases analytically from the guiding lines to generate the basis for a fundamental understanding of the more complex biophysical systems. Chapters close with challenging problems whose solutions are provided at the end of the book to complete the pedagogical treatment in the book. To the second edition several new chapters were added. The medium polarization is treated self-consistently using basic elements of polaron theory and more advanced nonlinear Schr??dinger equations to describe the dynamics of solvation. Ion transport through a membrane was extended by the discussion of cooperative effects. Intramolecular transitions are now discussed in the new edition in much more detail, including also radiationless transitions. Very recent developments in spectroscopy are included, especially two-dimensional and hole-burning spectroscopy. The discussion of charge transfer processes was extended by including recent results of hole transfer in DNA in connection with the super-exchange mechanism. The chapter on molecular motors was rewritten to include the most recent developments of new models. The book is a useful text for students and researchers wanting to go through the mathematical derivations in the theories presented. This book attracts a group of applied mathematically oriented students and scholars to the exciting field of molecular biophysics.??
ISBN,Price9783662556719
Keyword(s)1. Biochemical engineering 2. Biological and Medical Physics, Biophysics 3. BIOLOGICAL PHYSICS 4. BIOMATHEMATICS 5. Biomedical engineering 6. Biomedical Engineering and Bioengineering 7. BIOPHYSICS 8. EBOOK 9. EBOOK - SPRINGER 10. Mathematical and Computational Biology 11. Protein Science 12. Proteins??
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I09798     On Shelf    

3.     
No image available
TitleComputational Physics : Simulation of Classical and Quantum Systems
Author(s)Scherer, Philipp O.J
PublicationBerlin, Heidelberg, Springer Berlin Heidelberg, 2010.
DescriptionXV, 319 p. 116 illus : online resource
Abstract NoteThis book encapsulates the coverage for a two-semester course in computational physics. The first part introduces the basic numerical methods while omitting mathematical proofs but demonstrating the algorithms by way of numerous computer experiments. The second part specializes in simulation of classical and quantum systems with instructive examples spanning many fields in physics, from a classical rotor to a quantum bit. All program examples are realized as Java applets ready to run in your browser and do not require any programming skills
ISBN,Price9783642139901
Keyword(s)1. Chemistry, Physical and theoretical 2. COMPLEX SYSTEMS 3. Computational Mathematics and Numerical Analysis 4. Computer mathematics 5. DYNAMICAL SYSTEMS 6. EBOOK 7. EBOOK - SPRINGER 8. Numerical and Computational Physics, Simulation 9. PHYSICAL CHEMISTRY 10. PHYSICS 11. STATISTICAL PHYSICS 12. Statistical Physics and Dynamical Systems 13. Theoretical and Computational Chemistry
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I07911     On Shelf    

4.    
No image available
TitleTheoretical Molecular Biophysics
Author(s)Scherer, Philipp O.J;Fischer, Sighart F
PublicationBerlin, Heidelberg, Springer Berlin Heidelberg, 2010.
DescriptionXIII, 371 p. 250 illus., 3 illus. in color : online resource
Abstract Note"Theoretical Molecular Biophysics" is an advanced study book for students, shortly before or after completing undergraduate studies, in physics, chemistry or biology. It provides the tools for an understanding of elementary processes in biology, such as photosynthesis on a molecular level. A basic knowledge in mechanics, electrostatics, quantum theory and statistical physics is desirable. The reader will be exposed to basic concepts in modern biophysics such as entropic forces, phase separation, potentials of mean force, proton and electron transfer, heterogeneous reactions coherent and incoherent energy transfer as well as molecular motors. Basic concepts such as phase transitions of biopolymers, electrostatics, protonation equilibria, ion transport, radiationless transitions as well as energy- and electron transfer are discussed within the frame of simple models
ISBN,Price9783540856108
Keyword(s)1. Biological and Medical Physics, Biophysics 2. BIOLOGICAL PHYSICS 3. Biomedical engineering 4. Biomedical Engineering and Bioengineering 5. BIOPHYSICS 6. EBOOK 7. EBOOK - SPRINGER 8. ENGINEERING 9. Engineering, general 10. Mathematical Methods in Physics 11. PHYSICS 12. QUANTUM COMPUTERS 13. Quantum Information Technology, Spintronics 14. QUANTUM PHYSICS 15. SPINTRONICS
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I07736     On Shelf    

(page:1 / 1) [#4]