SLIM21

Sort Order Display Format Items / Page  
 
  Click the serial number on the left to view the details of the item.
 #  AuthorTitleAccn#YearItem Type Claims
41 Vasa, P Ultrafast Biophotonics I10323 2016 eBook  
42 Mouritsen, Ole G LIFE - AS A MATTER OF FAT I10307 2016 eBook  
43 Velmurugu, Yogambigai Dynamics and Mechanism of DNA-Bending Proteins in Binding Site Recognition I10294 2017 eBook  
44 Keiser, Gerd Biophotonics I10287 2016 eBook  
45 Rostovtseva, Tatiana K Molecular Basis for Mitochondrial Signaling I10256 2017 eBook  
46 Ticar, Johanna Maria 3D Analysis of the Myocardial Microstructure I10252 2016 eBook  
47 Solov???yov, Andrey V Nanoscale Insights into Ion-Beam Cancer Therapy I10243 2017 eBook  
48 Prochazka, Marek Surface-Enhanced Raman Spectroscopy I10239 2016 eBook  
49 Webber, Jr., Charles L Recurrence Plots and Their Quantifications: Expanding Horizons I10167 2016 eBook  
50 W??rl, Matthias Towards Offline PET Monitoring at a Cyclotron-Based Proton Therapy Facility I10136 2016 eBook  
(page:5 / 53) [#530] First Page   Previous Page   Next Page   Last Page 

41.    
No image available
TitleUltrafast Biophotonics
Author(s)Vasa, P;Mathur, D
PublicationCham, Springer International Publishing, 2016.
DescriptionXI, 227 p. 60 illus., 20 illus. in color : online resource
Abstract NoteThis book presents emerging contemporary optical techniques of ultrafast science which have opened entirely new vistas for probing biological entities and processes. The spectrum reaches from time-resolved imaging and multiphoton microscopy to cancer therapy and studies of DNA damage. The book displays interdisciplinary research at the interface of physics and biology. Emerging topics on the horizon are also discussed, like the use of squeezed light, frequency combs and terahertz imaging as the possibility of mimicking biological systems. The book is written in a manner to make it readily accessible to researchers, postgraduate biologists, chemists, engineers, and physicists and students of optics, biomedical optics, photonics and biotechnology.
ISBN,Price9783319396149
Keyword(s)1. BIOCHEMISTRY 2. Biochemistry, general 3. Biological and Medical Physics, Biophysics 4. BIOLOGICAL PHYSICS 5. Biomedical engineering 6. Biomedical Engineering and Bioengineering 7. BIOPHYSICS 8. EBOOK 9. EBOOK - SPRINGER 10. LASERS 11. Optics, Lasers, Photonics, Optical Devices 12. PHOTONICS 13. PHYSICAL CHEMISTRY
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I10323     On Shelf    

42.     
No image available
TitleLIFE - AS A MATTER OF FAT : Lipids in a Membrane Biophysics Perspective
Author(s)Mouritsen, Ole G;Bagatolli, Luis A
PublicationCham, Springer International Publishing, 2016.
DescriptionXVII, 298 p : online resource
Abstract NoteThe present book gives a multi-disciplinary perspective on the physics of life and the particular role played by lipids (fats) and the lipid-bilayer component of cell membranes. The emphasis is on the physical properties of lipid membranes seen as soft and molecularly structured interfaces. By combining and synthesizing insights obtained from a variety of recent studies, an attempt is made to clarify what membrane structure is and how it can be quantitatively described. Furthermore, it is shown how biological function mediated by membranes is controlled by lipid membrane structure and organization on length scales ranging from the size of the individual molecule, across molecular assemblies of proteins and lipid domains in the range of nanometers, to the size of whole cells. Applications of lipids in nanotechnology and biomedicine are also described. ?? The first edition of the present book was published in 2005 when lipidomics was still very much an emerging science and lipids about to be recognized as being as important for life as proteins, sugars, and genes. This significantly expanded and revised edition takes into account the tremendous amount of knowledge gained over the past decade. ??In addition, the book now includes more tutorial material on the biochemistry of lipids and the principles of lipid self-assembly. ?? The book is aimed at undergraduate students and young research workers within physics, chemistry, biochemistry, molecular biology, nutrition, as well as pharmaceutical and biomedical sciences. ?? From the reviews of the first edition: ?? "This is a highly interesting book and a pleasure to read. It represents a new and excellent pedagogical introduction to the field of lipids and the biophysics of biological membranes. I reckon that physicists and chemists as well as biologists will benefit from this approach to the field and Mouritsen shows a deep insight into the physical chemistry of lipids." (G??ran Lindblom, Chemistry and Physics of Lipids 2005, vol. 135, page 105-106) ?? "The book takes the reader on an exciting journey through the lipid world, and Mouritsen attracts the attention with a lively style of writing ??? . a comprehensive view of the ???lipid sea??? can be easily achieved, gaining the right perspectives for envisaging future developments in the nascent field of lipidomics." (Carla Ferreri, ChemBioChem, Vol. 6 (8), 2005)
ISBN,Price9783319226149
Keyword(s)1. Amorphous substances 2. Biological and Medical Physics, Biophysics 3. BIOLOGICAL PHYSICS 4. Bioorganic Chemistry 5. BIOPHYSICS 6. Complex fluids 7. EBOOK 8. EBOOK - SPRINGER 9. Food Science 10. Food???Biotechnology 11. Lipidology 12. Lipids 13. Soft and Granular Matter, Complex Fluids and Microfluidics
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I10307     On Shelf    

43.     
No image available
TitleDynamics and Mechanism of DNA-Bending Proteins in Binding Site Recognition
Author(s)Velmurugu, Yogambigai
PublicationCham, Springer International Publishing, 2017.
DescriptionXXI, 199 p. 112 illus., 105 illus. in color : online resource
Abstract NoteUsing a novel approach that combines high temporal resolution of the laser T-jump technique with unique sets of fluorescent probes, this study unveils previously unresolved DNA dynamics during search and recognition by an architectural DNA bending protein and two DNA damage recognition proteins. Many cellular processes involve special proteins that bind to specific DNA sites with high affinity. How these proteins recognize their sites while rapidly searching amidst ~3 billion nonspecific sites in genomic DNA remains an outstanding puzzle. Structural studies show that proteins severely deform DNA at specific sites and indicate that DNA deformability is a key factor in site-specific recognition. However, the dynamics of DNA deformations have been difficult to capture, thus obscuring our understanding of recognition mechanisms. The experiments presented in this thesis uncover, for the first time, rapid (~100-500 microseconds) DNA unwinding/bending attributed to nonspecific interrogation, prior to slower (~5-50 milliseconds) DNA kinking/bending/nucleotide-flipping during recognition. These results help illuminate how a searching protein interrogates DNA deformability and eventually ???stumbles??? upon its target site. Submillisecond interrogation may promote preferential stalling of the rapidly scanning protein at cognate sites, thus enabling site-recognition. Such multi-step search-interrogation-recognition processes through dynamic conformational changes may well be common to the recognition mechanisms for diverse DNA-binding proteins.
ISBN,Price9783319451299
Keyword(s)1. Biological and Medical Physics, Biophysics 2. BIOLOGICAL PHYSICS 3. BIOPHYSICS 4. EBOOK 5. EBOOK - SPRINGER 6. MICROSCOPY 7. Protein-Ligand Interactions 8. Proteins?? 9. SPECTROSCOPY 10. Spectroscopy and Microscopy
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I10294     On Shelf    

44.     
No image available
TitleBiophotonics : Concepts to Applications
Author(s)Keiser, Gerd
PublicationSingapore, Springer Singapore, 2016.
DescriptionXXIII, 345 p. 188 illus., 86 illus. in color : online resource
Abstract NoteThis book is designed to introduce senior-level and postgraduate students to the principles and applications of biophotonics. It also will serve well as a working reference to practicing physicians, clinicians, biomedical researchers, and biomedical engineers dealing with photonics-based tools and instruments. The book topics include the fundamentals of optics and photonics, the optical properties of biological tissues, various types of light-tissue interactions, microscopy for visualizing tissue components, spectroscopy for optically analyzing the properties of healthy and diseased tissue, and optical biomedical imaging. The tools and techniques described in the book include laser and LED optical sources, photodetectors, optical fibers, bioluminescent probes for labeling cells, optical-based biosensors, nanophotonics, surface plasmon resonance, and lab-on-a-chip technologies. Among the applications are optical coherence tomography (OCT), flow cytometery, photodynamic therapy (PDT), low-level light therapy (LLLT), tissue characterization, and laser ablation. To assist readers in learning the material and applying it to practical designs, the book will include worked out examples and drill problems throughout. A collection of homework problems is included to help test the reader???s comprehension of the material covered, and to extend and elucidate the text.This book introduces senior-level and postgraduate students to the principles and applications of biophotonics. It also serves as a valuable reference resource or as a short-course textbook for practicing physicians, clinicians, biomedical researchers, healthcare professionals, and biomedical engineers and technicians dealing with the design, development, and application of photonics components and instrumentation to biophotonics issues. The topics include the fundamentals of optics and photonics, the optical properties of biological tissues, light-tissue interactions, microscopy for visualizing tissue components, spectroscopy for optically analyzing the properties of tissue, and optical biomedical imaging. It also describes tools and techniques such as laser and LED optical sources, photodetectors, optical fibers, bioluminescent probes for labeling cells, optical-based biosensors, surface plasmon resonance, and lab-on-a-chip technologies. Among the applications are optical coherence tomography (OCT), optical imaging modalities, photodynamic therapy (PDT), photobiostimulation or low-level light therapy (LLLT), diverse microscopic and spectroscopic techniques, tissue characterization, laser tissue ablation, optical trapping, and optogenetics. Worked examples further explain the material and how it can be applied to practical designs, and the homework problems help test readers??? understanding of the text
ISBN,Price9789811009457
Keyword(s)1. Biological and Medical Physics, Biophysics 2. BIOLOGICAL PHYSICS 3. Biomedical engineering 4. Biomedical Engineering and Bioengineering 5. BIOPHYSICS 6. CLASSICAL ELECTRODYNAMICS 7. EBOOK 8. EBOOK - SPRINGER 9. ELECTRODYNAMICS 10. LASERS 11. OPTICS 12. Optics, Lasers, Photonics, Optical Devices 13. PHOTONICS
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I10287     On Shelf    

45.     
No image available
TitleMolecular Basis for Mitochondrial Signaling
Author(s)Rostovtseva, Tatiana K
PublicationCham, Springer International Publishing, 2017.
DescriptionXIV, 386 p. 61 illus., 54 illus. in color : online resource
Abstract NoteThis book covers recent advances in the study of structure, function, and regulation of metabolite, protein and ion translocating channels, and transporters in mitochondria. A wide array of cutting-edge methods are covered, ranging from electrophysiology and cell biology to bioinformatics, as well as structural, systems, and computational biology. At last, the molecular identity of two important channels in the mitochondrial inner membrane, the mitochondrial calcium uniporter and the mitochondrial permeability transition pore have been established. After years of work on the physiology and structure of VDAC channels in the mitochondrial outer membrane, there have been multiple discoveries on VDAC permeation and regulation by cytosolic proteins. Recent breakthroughs in structural studies of the mitochondrial cholesterol translocator reveal a set of novel unexpected features and provide essential clues for defining therapeutic strategies. Molecular Basis for Mitochondrial Signaling covers these and many more recent studies of mitochondria function, their communication with other organelles, and their critical roles in development, aging, and in a plethora of stressful or degenerative events. Authored by leading researchers in the field, this volume will be an indispensable reference resource for graduate students and academics working in related areas of biophysics and cell biology as well as for professionals within industry
ISBN,Price9783319555393
Keyword(s)1. Apoptosis 2. Biological and Medical Physics, Biophysics 3. BIOLOGICAL PHYSICS 4. BIOPHYSICS 5. Cell cycle 6. Cell Cycle Analysis 7. EBOOK 8. EBOOK - SPRINGER
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I10256     On Shelf    

46.     
No image available
Title3D Analysis of the Myocardial Microstructure : Determination of Fiber and Sheet Orientations
Author(s)Ticar, Johanna Maria
PublicationWiesbaden, 1. Imprint: Springer Spektrum 2. Springer Fachmedien Wiesbaden, 2016.
DescriptionXV, 76 p. 39 illus. in color : online resource
Abstract NoteThe master thesis of Johanna Maria Ticar reveals high-resolution insights into the myocardial microstructure and illustrates that cardiac muscle fibers are straight, running in parallel with one preferred fiber direction, however, deposits such as fat seem to compromise the regular and compact structure. Second harmonic generation imaging combined with optical tissue clearing is an accurate method for determining the three-dimensional muscle fiber and sheet orientations and hence, allows the calculation of fiber rotation throughout the ventricle wall. Contents ??? Structure of the Human Myocardium ??? Imaging Tools for Fiber Mapping ??? Optical Tissue Clearing ??? Second Harmonic Generation Imaging ??? 3D Reconstruction and Visualization Target Groups ??? Researchers and Students in the field of Biomedical Engineering with a focus on Bioengineering and??Biomechanics ??? Professionals in the field of Biomedicine The Author Johanna Maria Ticar, MSc, studied Biomedical Engineering at Graz University of Technology. Her research interests are the microstructure of the human body, tissue engineering and regenerative medicine, foremost in the field of cardiology
ISBN,Price9783658114244
Keyword(s)1. Biological and Medical Physics, Biophysics 2. Biological Microscopy 3. BIOLOGICAL PHYSICS 4. Biomedicine, general 5. BIOPHYSICS 6. EBOOK 7. EBOOK - SPRINGER 8. MEDICINE 9. MICROSCOPY
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I10252     On Shelf    

47.     
No image available
TitleNanoscale Insights into Ion-Beam Cancer Therapy
Author(s)Solov???yov, Andrey V
PublicationCham, Springer International Publishing, 2017.
DescriptionXX, 498 p. 183 illus., 159 illus. in color : online resource
Abstract NoteThis book provides a unique and comprehensive overview of state-of-the-art understanding of the molecular and nano-scale processes that play significant roles in ion-beam cancer therapy. It covers experimental design and methodology, and reviews the theoretical understanding of the processes involved. It offers the reader an opportunity to learn from a coherent approach about the physics, chemistry and biology relevant to ion-beam cancer therapy, a growing field of important medical application worldwide. The book describes phenomena occurring on different time and energy scales relevant to the radiation damage of biological targets and ion-beam cancer therapy from the molecular (nano) scale up to the macroscopic level. It illustrates how ion-beam therapy offers the possibility of excellent dose localization for treatment of malignant tumours, minimizing radiation damage in normal tissue whilst maximizing cell-killing within the tumour, offering a significant development in cancer therapy. The full potential of such therapy can only be realized by better understanding the physical, chemical and biological mechanisms, on a range of time and space scales that lead to cell death under ion irradiation. This book describes how, using a multiscale approach, experimental and theoretical expertise available can lead to greater insight at the nanoscopic and molecular level into radiation damage of biological targets induced by ion impact. The book is intended for advanced students and specialists in the areas of physics, chemistry, biology and medicine related to ion-beam therapy, radiation protection, biophysics, radiation nanophysics and chemistry, atomic and molecular physics, condensed matter physics, and the physics of interaction of charged particles with matter. One of the most important features of the book is the inclusive multiscale approach to the understanding of complex and highly interdisciplinary processes behind ion-beam cancer therapy, which stretches from the atomistic level up to the biological scale and is demonstrated to be in excellent agreement with experimental observations
ISBN,Price9783319430300
Keyword(s)1. Biological and Medical Physics, Biophysics 2. BIOLOGICAL PHYSICS 3. BIOPHYSICS 4. Cancer Research 5. EBOOK 6. EBOOK - SPRINGER 7. Heavy ions 8. Medical and Radiation Physics 9. Medical physics 10. Nanochemistry 11. Nanoscale science 12. Nanoscale Science and Technology 13. NANOSCIENCE 14. Nanostructures 15. NUCLEAR PHYSICS 16. Nuclear Physics, Heavy Ions, Hadrons 17. RADIATION
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I10243     On Shelf    

48.     
No image available
TitleSurface-Enhanced Raman Spectroscopy : Bioanalytical, Biomolecular and Medical Applications
Author(s)Prochazka, Marek
PublicationCham, Springer International Publishing, 2016.
DescriptionXVI, 221 p. 78 illus., 27 illus. in color : online resource
Abstract NoteThis book gives an overview of recent developments in RS and SERS for sensing and biosensing considering also limitations, possibilities and prospects of this technique. Raman scattering (RS) is a widely used vibrational technique providing highly specific molecular spectral patterns. A severe limitation for the application of this spectroscopic technique lies in the low cross section of RS. Surface-enhanced Raman scattering (SERS) spectroscopy overcomes this problem by 6-11 orders of magnitude enhancement compared with the standard RS for molecules in the close vicinity of certain rough metal surfaces. Thus, SERS combines molecular fingerprint specificity with potential single-molecule sensitivity. Due to the recent development of new SERS-active substrates, labeling and derivatization chemistry as well as new instrumentations, SERS became a very promising tool for many varied applications, including bioanalytical studies and sensing. Both intrinsic and extrinsic SERS biosensing schemes have been employed to detect and identify small molecules, nucleic acids and proteins, and also for cellular and in vivo sensing
ISBN,Price9783319239927
Keyword(s)1. Biological and Medical Physics, Biophysics 2. BIOLOGICAL PHYSICS 3. Biological Techniques 4. Biology???Technique 5. BIOPHYSICS 6. EBOOK 7. EBOOK - SPRINGER 8. Measurement Science and Instrumentation 9. Measurement?????? 10. Medical and Radiation Physics 11. Medical physics 12. MICROSCOPY 13. PHYSICAL MEASUREMENTS 14. RADIATION 15. SPECTROSCOPY 16. Spectroscopy and Microscopy
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I10239     On Shelf    

49.     
No image available
TitleRecurrence Plots and Their Quantifications: Expanding Horizons : Proceedings of the 6th International Symposium on Recurrence Plots, Grenoble, France, 17-19 June 2015
Author(s)Webber, Jr., Charles L;Ioana, Cornel;Marwan, Norbert
PublicationCham, Springer International Publishing, 2016.
DescriptionXXII, 380 p. 207 illus., 158 illus. in color : online resource
Abstract NoteThe chapters in this book originate from the research work and contributions presented at the Sixth International Symposium on Recurrence Plots held in Grenoble, France in June 2015. Scientists from numerous disciplines gathered to exchange knowledge on recent applications and developments in recurrence plots and recurrence quantification analysis. This meeting was remarkable because of the obvious expansion of recurrence strategies (theory) and applications (practice) into ever-broadening fields of science. It discusses real-world systems from various fields, including mathematics, strange attractors, applied physics, physiology, medicine, environmental and earth sciences, as well as psychology and linguistics. Even readers not actively researching any of these particular systems will benefit from discovering how other scientists are finding practical non-linear solutions to specific problems. The book is of interest to an interdisciplinary audience of recurrence plot users and researchers interested in time series analysis in particular, and in complex systems in general
ISBN,Price9783319299228
Keyword(s)1. Applications of Graph Theory and Complex Networks 2. Applications of Nonlinear Dynamics and Chaos Theory 3. Biological and Medical Physics, Biophysics 4. BIOLOGICAL PHYSICS 5. BIOPHYSICS 6. COMPLEX SYSTEMS 7. COMPLEXITY 8. COMPUTATIONAL COMPLEXITY 9. DYNAMICAL SYSTEMS 10. DYNAMICS 11. EBOOK 12. EBOOK - SPRINGER 13. PHYSICS 14. STATISTICAL PHYSICS 15. SYSTEM THEORY 16. VIBRATION 17. Vibration, Dynamical Systems, Control
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I10167     On Shelf    

50.    
No image available
TitleTowards Offline PET Monitoring at a Cyclotron-Based Proton Therapy Facility : Experiments and Monte Carlo Simulations
Author(s)W??rl, Matthias
PublicationWiesbaden, 1. Imprint: Springer Spektrum 2. Springer Fachmedien Wiesbaden, 2016.
DescriptionXV, 86 p. 30 illus., 10 illus. in color : online resource
Abstract NoteMatthias W??rl presents two essential steps to implement offline PET monitoring of proton dose delivery at a clinical facility, namely the setting up of an accurate Monte Carlo model of the clinical beamline and the experimental validation of positron emitter production cross-sections. In the first part, the field size dependence of the dose output is described for scanned proton beams. Both the Monte Carlo and an analytical computational beam model were able to accurately predict target dose, while the latter tends to overestimate dose in normal tissue. In the second part, the author presents PET measurements of different phantom materials, which were activated by the proton beam. The results indicate that for an irradiation with a high number of protons for the sake of good statistics, dead time losses of the PET scanner may become important and lead to an underestimation of positron-emitter production yields. Contents Monte Carlo Modeling of a Clinical Proton Beam Low-Dose Envelope and Field Size Factor PET Activation Studies Target Groups Researchers and students in the field of medical physics with focus on particle therapy Medical physicists at proton therapy facilities The Author Matthias W??rl wrote his Master???s Thesis at the chair of Medical Physics at the Ludwig-Maximilians University Munich. He is now a PhD student at the same department, working on transmission imaging with laser-accelerated ions
ISBN,Price9783658131685
Keyword(s)1. Biological and Medical Physics, Biophysics 2. BIOLOGICAL PHYSICS 3. BIOPHYSICS 4. EBOOK 5. EBOOK - SPRINGER 6. MATHEMATICAL PHYSICS 7. NUCLEAR PHYSICS 8. Particle and Nuclear Physics 9. Theoretical, Mathematical and Computational Physics
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I10136     On Shelf    

(page:5 / 53) [#530] First Page   Previous Page   Next Page   Last Page