SLIM21

Sort Order Display Format Items / Page  
 
  Click the serial number on the left to view the details of the item.
 #  AuthorTitleAccn#YearItem Type Claims
1 Meinecke, Stefan Spatio-Temporal Modeling and Device Optimization of Passively Mode-Locked Semiconductor Lasers I12519 2022 Book  
2 LaPierre, Ray Getting Started in Quantum Optics I12323 2022 Book  
(page:1 / 1) [#2]     

1.    
No image available
TitleSpatio-Temporal Modeling and Device Optimization of Passively Mode-Locked Semiconductor Lasers
Author(s)Meinecke, Stefan
PublicationCham, 1. Imprint: Springer 2. Springer International Publishing, 2022.
DescriptionXVIII, 251 p. 87 illus. in color : online resource
Abstract NoteThis thesis investigates passively mode-locked semiconductor lasers by numerical methods. The understanding and optimization of such devices is crucial to the advancement of technologies such as optical data communication and dual comb spectroscopy. The focus of the thesis is therefore on the development of efficient numerical models, which are able both to perform larger parameter studies and to provide quantitative predictions. Along with that, visualization and evaluation techniques for the rich spatio-temporal laser dynamics are developed; these facilitate the physical interpretation of the observed features. The investigations in this thesis revolve around two specific semiconductor devices, namely a monolithically integrated three-section tapered quantum-dot laser and a V-shaped external cavity laser. In both cases, the simulations closely tie in with experimental results, which have been obtained in collaboration with the TU Darmstadt and the ETH Zurich. Based on the successful numerical reproduction of the experimental findings, the emission dynamics of both lasers can be understood in terms of the cavity geometry and the active medium dynamics. The latter, in particular, highlights the value of the developed simulation tools, since the fast charge-carrier dynamics are generally not experimentally accessible during mode-locking operation. Lastly, the numerical models are used to perform laser design explorations and thus to derive recommendations for further optimizations
ISBN,Price9783030962487
Keyword(s)1. EBOOK 2. EBOOK - SPRINGER 3. Laser Technology 4. LASERS 5. MATERIALS 6. OPTICS 7. Optics and Photonics 8. Photonic Devices 9. PHOTONICS 10. SEMICONDUCTORS
Item TypeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I12519     On Shelf    

2.    
No image available
TitleGetting Started in Quantum Optics
Author(s)LaPierre, Ray
PublicationCham, 1. Imprint: Springer 2. Springer International Publishing, 2022.
DescriptionXV, 240 p. 101 illus., 40 illus. in color : online resource
Abstract NoteThis book, based on classroom-tested lecture notes, provides a self-contained one semester undergraduate course on quantum optics, accessible to students (and other readers) who have completed an introductory quantum mechanics course and are familiar with Dirac notation and the concept of entanglement. The book covers canonical quantization, the harmonic oscillator, vacuum fluctuations, Fock states, the single photon state, quantum optical treatment of the beam splitter and the interferometer, multimode quantized light, and coherent and incoherent states. Metrology is a particular area of emphasis, with the book culminating in a treatment of squeezed light and its use in the laser interferometer gravitational-wave observatory (LIGO). The Heisenberg limit is described, along with NOON states and their application in super-sensitivity, super-resolution and quantum lithography. Applications of entanglement and coincidence measurements are described including ghost imaging, quantum illumination, absolute photodetector calibration, and interaction-free measurement. With quantum optics playing a central role in the so-called ???second quantum revolution,??? this book, equipped with plenty of exercises and worked examples, will leave students well prepared to enter graduate study or industry
ISBN,Price9783031124327
Keyword(s)1. EBOOK 2. EBOOK - SPRINGER 3. MATERIALS 4. Microwaves, RF Engineering and Optical Communications 5. OPTOELECTRONIC DEVICES 6. Photonic Devices 7. PHOTONICS 8. QUANTUM COMPUTERS 9. Quantum computing 10. Quantum Imaging and Sensing 11. QUANTUM OPTICS 12. QUANTUM PHYSICS 13. TELECOMMUNICATION
Item TypeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I12323     On Shelf    

(page:1 / 1) [#2]