SLIM21

Sort Order Display Format Items / Page  
 
  Click the serial number on the left to view the details of the item.
 #  AuthorTitleAccn#YearItem Type Claims
11 Alabiso, Carlo A Primer on Hilbert Space Theory I08208 2015 eBook  
12 Esposito, Chiara Formality Theory I07996 2015 eBook  
13 Zeidler, Eberhard Quantum Field Theory I: Basics in Mathematics and Physics I07526 2006 eBook  
14 Cicogna, Giampaolo Metodi matematici della Fisica I07356 2015 eBook  
15 Butz, Tilman Fourier Transformation for Pedestrians I07050 2006 eBook  
16 Verbeure, Andr?? F Many-Body Boson Systems I06898 2011 eBook  
17 Cicogna, Giampaolo Metodi matematici della Fisica I06219 2008 eBook  
18 Blank, Jir?? Hilbert Space Operators in Quantum Physics I05795 2008 eBook  
19 Mathai, A.M The H-Function I05634 2010 eBook  
20 R??dei, Mikl??s Quantum Logic in Algebraic Approach I05307 1998 eBook  
(page:2 / 4) [#39] First Page   Previous Page   Next Page   Last Page 

11.    
No image available
TitleA Primer on Hilbert Space Theory : Linear Spaces, Topological Spaces, Metric Spaces, Normed Spaces, and Topological Groups
Author(s)Alabiso, Carlo;Weiss, Ittay
PublicationCham, 1. Imprint: Springer 2. Springer International Publishing, 2015.
DescriptionXVII, 255 p. 5 illus : online resource
Abstract NoteThis book is an introduction to the theory of Hilbert space, a fundamental tool for non-relativistic quantum mechanics. Linear, topological, metric, and normed spaces are all addressed in detail, in a rigorous but reader-friendly fashion. The rationale for an introduction to the theory of Hilbert space, rather than a detailed study of Hilbert space theory itself, resides in the very high mathematical difficulty of even the simplest physical case. Within an ordinary graduate course in physics there is insufficient time to cover the theory of Hilbert spaces and operators, as well as distribution theory, with sufficient mathematical rigor. Compromises must be found between full rigor and practical use of the instruments. The book is based on the author's lessons on functional analysis for graduate students in physics. It will equip the reader to approach Hilbert space and, subsequently, rigged Hilbert space, with a more practical attitude. With respect to the original lectures, the mathematical flavor in all subjects has been enriched. Moreover, a brief introduction to topological groups has been added in addition to exercises and solved problems throughout the text. With these improvements, the book can be used in upper undergraduate and lower graduate courses, both in Physics and in Mathematics
ISBN,Price9783319037134
Keyword(s)1. ALGEBRAIC TOPOLOGY 2. EBOOK 3. EBOOK - SPRINGER 4. FUNCTIONAL ANALYSIS 5. Mathematical Methods in Physics 6. PHYSICS
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I08208     On Shelf    

12.     
No image available
TitleFormality Theory : From Poisson Structures to Deformation Quantization
Author(s)Esposito, Chiara
PublicationCham, 1. Imprint: Springer 2. Springer International Publishing, 2015.
DescriptionXII, 90 p. 4 illus : online resource
Abstract NoteThis book is a survey of the theory of formal deformation quantization of Poisson manifolds, in the formalism developed by Kontsevich. It is intended as an educational introduction for mathematical physicists who are dealing with the subject for the first time. The main topics covered are the theory of Poisson manifolds, star products and their classification, deformations of associative algebras and the formality theorem. Readers will also be familiarized with the relevant physical motivations underlying the purely mathematical construction
ISBN,Price9783319092904
Keyword(s)1. EBOOK 2. EBOOK - SPRINGER 3. FUNCTIONAL ANALYSIS 4. MATHEMATICAL PHYSICS 5. Quantum Field Theories, String Theory 6. QUANTUM FIELD THEORY 7. STRING THEORY
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I07996     On Shelf    

13.     
No image available
TitleQuantum Field Theory I: Basics in Mathematics and Physics : A Bridge between Mathematicians and Physicists
Author(s)Zeidler, Eberhard
PublicationBerlin, Heidelberg, 1. Imprint: Springer 2. Springer Berlin Heidelberg, 2006.
DescriptionXXIV, 1051 p : online resource
Abstract NoteThis is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. The book tries to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which is beyond the usual curriculum in physics. It is the author's goal to present the state of the art of realizing Einstein's dream of a unified theory for the four fundamental forces in the universe (gravitational, electromagnetic, strong, and weak interaction). From the reviews: "??? Quantum field theory is one of the great intellectual edifices in the history of human thought. ??? This volume differs from other books on quantum field theory in its greater emphasis on the interaction of physics with mathematics. ??? an impressive work of scholarship." (William G. Faris, SIAM Review, Vol. 50 (2), 2008) ??"??? it is a fun book for practicing quantum field theorists to browse, and it may be similarly enjoyed by mathematical colleagues. Its ultimate value may lie in encouraging students to enter this challenging interdisciplinary area of mathematics and physics. Summing Up: Recommended. Upper-division undergraduates through faculty." (M. C. Ogilvie, CHOICE, Vol. 44 (9), May, 2007)
ISBN,Price9783540347644
Keyword(s)1. ANALYSIS 2. Analysis (Mathematics) 3. EBOOK 4. EBOOK - SPRINGER 5. Elementary particles (Physics) 6. Elementary Particles, Quantum Field Theory 7. FUNCTIONAL ANALYSIS 8. MATHEMATICAL ANALYSIS 9. Mathematical Methods in Physics 10. MATHEMATICAL PHYSICS 11. PARTIAL DIFFERENTIAL EQUATIONS 12. PHYSICS 13. QUANTUM FIELD THEORY 14. Theoretical, Mathematical and Computational Physics
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I07526     On Shelf    

14.     
No image available
TitleMetodi matematici della Fisica
Author(s)Cicogna, Giampaolo
PublicationMilano, 1. Imprint: Springer 2. Springer Milan, 2015.
DescriptionX, 258 pagg. 22 figg : online resource
Abstract NoteQuesto libro trae la sua origine dagli appunti preparati per le lezioni di Metodi Matematici della Fisica tenute al Dipartimento di Fisica dell'Universit?? di Pisa, e via via sistemati, raffinati e aggiornati nel corso di molti anni di insegnamento. L'intento generale ?? di fornire una presentazione per quanto possibile semplice e diretta dei metodi matematici basilari e rilevanti per la Fisica. Anche allo scopo di mantenere questo testo entro i limiti di un manuale di dimensioni contenute e di agevole consultazione, sono stati spesso sacrificati i dettagli tecnici delle dimostrazioni matematiche (o anzi le dimostrazioni per intero) e anche i formalismi eccessivi, che tendono a nascondere la vera natura dei problemi. Al contrario, si ?? cercato di evidenziare ??? per quanto possibile ??? le idee sottostanti e le motivazioni che conducono ai diversi procedimenti. L'obiettivo principale e quello di mettere in condizione chi ha letto questo libro di acquisire gli strumenti adatti e le conoscenze di base che gli permettano di affrontare senza difficolt?? anche testi pi?? avanzati e impegnativi. Questa nuova Edizione conserva la struttura generale della prima Edizione, ma ?? arricchita dall'inserimento di numerosi esempi (e controesempi), con nuove osservazioni e chiarimenti su tutti gli argomenti proposti: Serie di Fourier, Spazi di Hilbert, Operatori lineari, Funzioni di Variabile complessa, Trasformate di Fourier e di Laplace, Distribuzioni. Inoltre, le prime nozioni della Teoria dei Gruppi, delle Algebre di Lie e delle Simmetrie in Fisica (che erano confinate in una Appendice nella Prima Edizione) vengono ora proposte in una forma sensibilmente ampliata, con vari esempi in vista delle applicazioni alla Fisica. In particolare, due nuovi Capitoli sono dedicati allo studio delle propriet?? di simmetria dell'atomo di idrogeno e dell'oscillatore armonico in Meccanica Quantistica
ISBN,Price9788847056848
Keyword(s)1. EBOOK 2. EBOOK - SPRINGER 3. FOURIER ANALYSIS 4. FUNCTIONAL ANALYSIS 5. Functions of a Complex Variable 6. FUNCTIONS OF COMPLEX VARIABLES 7. GROUP THEORY 8. Group Theory and Generalizations 9. Mathematical Methods in Physics 10. PHYSICS
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I07356     On Shelf    

15.     
No image available
TitleFourier Transformation for Pedestrians
Author(s)Butz, Tilman
PublicationBerlin, Heidelberg, 1. Imprint: Springer 2. Springer Berlin Heidelberg, 2006.
DescriptionXIV, 202 p : online resource
Abstract NoteMeant to serve an "entertaining textbook," this book belongs to a rare genre. It is written for all students and practitioners who deal with Fourier transformation. Fourier series as well as continuous and discrete Fourier transformation are covered, and particular emphasis is placed on window functions. Many illustrations and easy-to-solve exercises make the book especially accessible, and its humorous style will add to the pleasure of learning from it
ISBN,Price9783540311089
Keyword(s)1. EBOOK 2. EBOOK - SPRINGER 3. ENGINEERING 4. Engineering, general 5. FUNCTIONAL ANALYSIS 6. LASERS 7. Mathematical Methods in Physics 8. Optics, Lasers, Photonics, Optical Devices 9. PHOTONICS 10. PHYSICS 11. Physics, general
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I07050     On Shelf    

16.     
No image available
TitleMany-Body Boson Systems : Half a Century Later
Author(s)Verbeure, Andr?? F
PublicationLondon, 1. Imprint: Springer 2. Springer London, 2011.
DescriptionX, 190 p : online resource
Abstract NoteMany-body Boson Systems: Half a Century Later offers a modern way of dealing with the problems of equilibrium states of Bose systems. Starting with the variation principle of statistical mechanics and the energy-entropy balance principle as equilibrium criteria, results for general boson systems and models are explicitly derived using simple functional analytic calculus. Bridging the gap between idea???s of general theoretical physics and the phenomenological research in the field of Bose systems, this book provides an insight into the fascinating quantum world of bosons. Key topics include the occurrence of BEC and its intimate structural relation with the phenomena of spontaneous symmetry breaking and off-diagonal long range order; the condensate equation; the issue concerning the choice of boundary conditions; solvable versus non-solvable boson models; the set of quasi-free boson states; the role of dissipative perturbations; and the surprising but general relation between general quantum fluctuations and boson systems. Only some knowledge of quantum mechanics and undergraduate algebra and analysis is assumed. This textbook brings students and researchers smoothly from general concepts to vivid applications
ISBN,Price9780857291097
Keyword(s)1. Condensed materials 2. EBOOK 3. EBOOK - SPRINGER 4. FUNCTIONAL ANALYSIS 5. Mathematical Methods in Physics 6. MATHEMATICAL PHYSICS 7. OPERATOR THEORY 8. Phase transformations (Statistical physics) 9. PHYSICS 10. Quantum Gases and Condensates 11. QUANTUM PHYSICS 12. Theoretical, Mathematical and Computational Physics
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I06898     On Shelf    

17.     
No image available
TitleMetodi matematici della Fisica
Author(s)Cicogna, Giampaolo
PublicationMilano, 1. Imprint: Springer 2. Springer Milan, 2008.
DescriptionX, 242 pagg : online resource
Abstract NoteQuesto testo trae la sua origine da miei vecchi appunti, preparati per il corso di Metodi Matematici della Fisica e via via sistemati, raffinati e aggiornati nel corso di molti anni di insegnamento. L'obiettivo???? stato sempre quello di fornire una presentazione per quanto possibile semplice e diretta dei metodi matematici rilevanti per la Fisica: serie di Fourier, spazi di Hilbert, operatori lineari, funzioni di variabile complessa, trasformata di Fourier e di Laplace, distribuzioni. Oltre a questi argomenti di base, viene presentata, in Appendice, una breve introduzione alle prime nozioni di teoria dei gruppi, delle algebre di Lie e delle simmetrie in vista delle loro applicazioni alla Fisica. Anche allo scopo di mantenere il libro nei limiti ragionevoli di un manuale di dimensioni contenute e di agevole consultazione, sono stati spesso tralasciati i dettagli tecnici delle dimostrazioni matematiche (o anzi le dimostrazioni per intero) e tutti i formalismi eccessivi che spesso nascondono la vera natura del problema e del metodo necessario per affrontarlo. Al contrario, si???? cercato di chiarire le "idee sottostanti" ai diversi procedimenti; anche le applicazioni proposte sono quelle che meglio e piu' direttamente illustrano i procedimenti stessi, tralasciando altre applicazioni (Meccanica Quantistica, Elettromagnetismo, Equazioni alle Derivate Parziali, Funzioni Speciali, tanto per fare qualche esempio) che sconfinano in differenti discipline. Riassumendo, lo scopo principale e' quello di mettere in condizione chi legge questo libro di acquisire le conoscenze di base che gli permettano di affrontare senza difficolt?? anche testi ben pi?? avanzati e impegnativi
ISBN,Price9788847008342
Keyword(s)1. EBOOK 2. EBOOK - SPRINGER 3. FOURIER ANALYSIS 4. FUNCTIONAL ANALYSIS 5. Functions of a Complex Variable 6. FUNCTIONS OF COMPLEX VARIABLES 7. GROUP THEORY 8. Group Theory and Generalizations 9. Mathematical Methods in Physics 10. PHYSICS
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I06219     On Shelf    

18.     
No image available
TitleHilbert Space Operators in Quantum Physics
Author(s)Blank, Jir??;Exner, Pavel;Havl??cek, Miloslav
PublicationDordrecht, 1. Imprint: Springer 2. Springer Netherlands, 2008.
DescriptionXVII, 664 p : online resource
Abstract NoteThe second edition of this course-tested book provides a detailed and in-depth discussion of the foundations of quantum theory as well as its applications to various systems. The exposition is self-contained; in the first part the reader finds the mathematical background in chapters about functional analysis, operators on Hilbert spaces and their spectral theory, as well as operator sets and algebras. This material is used in the second part to a systematic explanation of the foundations, in particular, states and observables, properties of canonical variables, time evolution, symmetries and various axiomatic approaches. In the third part, specific physical systems and situations are discussed. Two chapters analyze Schr??dinger operators and scattering, two others added in the second edition are devoted to new important topics, quantum waveguides and quantum graphs. Some praise for the previous edition: "I really enjoyed reading this work. It is very well written, by three real experts in the field. It stands quite alone...." John R. Taylor, Professor of Physics and Presidential Teaching Scholar, University of Colorado at Boulder
ISBN,Price9781402088704
Keyword(s)1. EBOOK 2. EBOOK - SPRINGER 3. Elementary particles (Physics) 4. Elementary Particles, Quantum Field Theory 5. FUNCTIONAL ANALYSIS 6. MATHEMATICAL PHYSICS 7. OPERATOR THEORY 8. QUANTUM FIELD THEORY 9. QUANTUM PHYSICS 10. Theoretical, Mathematical and Computational Physics
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I05795     On Shelf    

19.     
No image available
TitleThe H-Function : Theory and Applications
Author(s)Mathai, A.M;Saxena, Ram Kishore;Haubold, Hans J
PublicationNew York, NY, 1. Imprint: Springer 2. Springer New York, 2010.
DescriptionXIV, 268 p : online resource
Abstract NoteThe topics of special H-function and fractional calculus are currently undergoing rapid changes both in theory and application. Taking into account the latest research results, the authors delve into these topics as they relate to applications to problems in statistics, physics, and engineering, particularly in condensed matter physics, plasma physics, and astrophysics. The book sets forth the definitions, contours, existence conditions, and particular cases for the H-function, then explores the properties and relationships among the Laplace, Fourier, Hankel, and other transforms. From here, the H-functions are utilized for applications in statistical distribution theory, structures of random variables, generalized distributions, Mathai???s pathway models, and versatile integrals. Functions of matrix argument are introduced with a focus on real-valued scalar functions when the matrices are real or Hermitian positive-definite. The text concludes with important recent applications to physical problems in reaction, diffusion, reaction-diffusion theory and statistics, and superstatistics. Generalized entropies as well as applications in astrophysics are dealt with. Over the last few years, material in this book has been added to various courses and developed to meet the needs of scholars at the PhD level. All exercises in the book have been used to probe the knowledge and ability of mathematics, statistics, and physics to students and researchers.
ISBN,Price9781441909169
Keyword(s)1. APPLIED MATHEMATICS 2. EBOOK 3. EBOOK - SPRINGER 4. ENGINEERING MATHEMATICS 5. FUNCTIONAL ANALYSIS 6. Mathematical and Computational Engineering 7. Mathematical Methods in Physics 8. MATHEMATICAL PHYSICS 9. PHYSICS 10. SPECIAL FUNCTIONS 11. Statistical Theory and Methods 12. Statistics?? 13. Theoretical, Mathematical and Computational Physics
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I05634     On Shelf    

20.    
No image available
TitleQuantum Logic in Algebraic Approach
Author(s)R??dei, Mikl??s
PublicationDordrecht, 1. Imprint: Springer 2. Springer Netherlands, 1998.
DescriptionX, 243 p : online resource
Abstract NoteThis work has grown out of the lecture notes that were prepared for a series of seminars on some selected topics in quantum logic. The seminars were delivered during the first semester of the 1993/1994 academic year in the Unit for Foundations of Science of the Department of History and Foundations of Mathematics and Science, Faculty of Physics, Utrecht University, The Netherlands, while I was staying in that Unit on a European Community Research Grant, and in the Center for Philosophy of Science, University of Pittsburgh, U. S. A. , where I was staying during the 1994/1995 academic year as a Visiting Fellow on a Fulbright Research Grant, and where I also was supported by the Istvan Szechenyi Scholarship Foundation. The financial support provided by these foundations, by the Center for Philosophy of Science and by the European Community is greatly acknowledged, and I wish to thank D. Dieks, the professor of the Foundations Group in Utrecht and G. Massey, the director of the Center for Philosophy of Science in Pittsburgh for making my stay at the respective institutions possible. I also wish to thank both the members of the Foundations Group in Utrecht, especially D. Dieks, C. Lutz, F. Muller, J. Uffink and P. Vermaas and the participants in the seminars at the Center for Philosophy of Science in Pittsburgh, especially N. Belnap, J. Earman, A. Janis, J. Norton, and J
ISBN,Price9789401590266
Keyword(s)1. EBOOK 2. EBOOK - SPRINGER 3. Elementary particles (Physics) 4. Elementary Particles, Quantum Field Theory 5. FUNCTIONAL ANALYSIS 6. MATHEMATICAL PHYSICS 7. Philosophy and science 8. PHILOSOPHY OF SCIENCE 9. QUANTUM FIELD THEORY 10. QUANTUM PHYSICS 11. Theoretical, Mathematical and Computational Physics
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I05307     On Shelf    

(page:2 / 4) [#39] First Page   Previous Page   Next Page   Last Page