SLIM21

Sort Order Display Format Items / Page  
 
  Click the serial number on the left to view the details of the item.
 #  AuthorTitleAccn#YearItem Type Claims
11 Dagdug, Leonardo Diffusion Under Confinement I12961 2024 eBook  
12 Das, Debraj Facets of Noise I12933 2023 eBook  
13 Hillberry, Logan Edward Optically Trapped Microspheres as Sensors of Mass and Sound I12905 2023 eBook  
14 Fleck, Robert Entropy and the Second Law of Thermodynamics I12837 2023 eBook  
15 Rychkov, Slava Lectures on the Random Field Ising Model I12821 2023 eBook  
16 Benatti, Fabio Dynamics, Information and Complexity in Quantum Systems I12811 2023 eBook  
17 Zhmakin, Alexander I Non-Fourier Heat Conduction I12781 2023 eBook  
18 Lista, Luca Statistical Methods for Data Analysis I12774 2023 eBook  
19 Kuipers, Folkert Stochastic Mechanics I12720 2023 eBook  
20 Blossey, Ralf The Poisson-Boltzmann Equation I12614 2023 eBook  
(page:2 / 99) [#986] First Page   Previous Page   Next Page   Last Page 

11.    
No image available
TitleDiffusion Under Confinement : A Journey Through Counterintuition
Author(s)Dagdug, Leonardo;Pe??a, Jason;Pompa-Garc??a, Ivan
PublicationCham, 1. Imprint: Springer 2. Springer International Publishing, 2024.
DescriptionXIX, 759 p. 191 illus., 175 illus. in color : online resource
Abstract NoteThis book offers the reader a journey through the counterintuitive nature of Brownian motion under confinement. Diffusion is a universal phenomenon that controls a wide range of physical, chemical, and biological processes. The transport of spatially-constrained molecules and small particles is ubiquitous in nature and technology and plays an essential role in different processes. Understanding the physics of diffusion under conditions of confinement is essential for a number of biological phenomena and potential technological applications in micro- and nanofluidics, among others. Studies on diffusion under confinement are typically difficult to understand for young scientists and students because of the extensive background on diffusion processes, physics, and mathematics that is required. All of this information is provided in this book, which is essentially self-contained as a result of the authors??? efforts to make it accessible to an audience of students froma variety of different backgrounds. The book also provides the necessary mathematical details so students can follow the technical process required to solve each problem. Readers will also find detailed explanations of the main results based on the last 30 years of research devoted to studying diffusion under confinement. The authors approach the physical problem from various angles and discuss the role of geometries and boundary conditions in diffusion. This textbook serves as a comprehensive and modern overview of Brownian motion under confinement and is intended for young scientists, graduate students, and advanced undergraduates in physics, physical chemistry, biology, chemistry, chemical engineering, biochemistry, bioengineering, and polymer and material sciences
ISBN,Price9783031464751
Keyword(s)1. APPLIED PROBABILITY 2. BIOMATHEMATICS 3. Computational Physics and Simulations 4. COMPUTER SIMULATION 5. EBOOK 6. EBOOK - SPRINGER 7. Markov Process 8. MARKOV PROCESSES 9. Mathematical and Computational Biology 10. MATHEMATICAL PHYSICS 11. PROBABILITIES 12. PROBABILITY THEORY 13. STATISTICAL PHYSICS
Item TypeeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I12961     On Shelf    

12.     
No image available
TitleFacets of Noise : Effects in Classical and Quantum Systems
Author(s)Das, Debraj;Gupta, Shamik
PublicationCham, 1. Imprint: Springer 2. Springer International Publishing, 2023.
DescriptionXX, 416 p. 111 illus., 101 illus. in color : online resource
Abstract NoteThis book provides a captivating journey through the realms of classical and quantum systems as it unravels the profound influence that noise may have on their static and dynamic properties. The first part of the book offers succinct yet enlightening discussions on foundational topics related to noise. The second part focuses on a variety of applications, where a diverse spectrum of noise effects in physical systems comes to life, meticulously presented and thoughtfully analyzed. Whether you are a curious student or a dedicated researcher, this book is your key to gaining invaluable insights into noise effects in physical systems. ???The book has the merit of presenting several topics scattered in the literature and could become a very useful reference.??? Giovanni Jona-Lasinio, Sapienza ??? Universit?? di Roma, Italy
ISBN,Price9783031453120
Keyword(s)1. Acoustical engineering 2. EBOOK - SPRINGER 3. Engineering Acoustics 4. QUANTUM PHYSICS 5. STATISTICAL PHYSICS 6. STOCHASTIC PROCESSES
Item TypeeBook
Multi-Media Links
media link description
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I12933     On Shelf    

13.     
No image available
TitleOptically Trapped Microspheres as Sensors of Mass and Sound : Brownian Motion as Both Signal and Noise
Author(s)Hillberry, Logan Edward
PublicationCham, 1. Imprint: Springer 2. Springer Nature Switzerland, 2023.
DescriptionXVI, 115 p. 44 illus., 39 illus. in color : online resource
Abstract NoteThis thesis makes significant advances in the use of microspheres in optical traps as highly precise sensing platforms. While optically trapped microspheres have recently proven their dominance in aqueous and vacuum environments, achieving state-of-the-art measurements of miniscule forces and torques, their sensitivity to perturbations in air has remained relatively unexplored. This thesis shows that, by uniquely operating in air and measuring its thermally-fluctuating instantaneous velocity, an optically trapped microsphere is an ultra-sensitive probe of both mass and sound. The mass of the microsphere is determined with similar accuracy to competitive methods but in a fraction of the measurement time and all while maintaining thermal equilibrium, unlike alternative methods. As an acoustic transducer, the air-based microsphere is uniquely sensitive to the velocity of sound, as opposed to the pressure measured by a traditional microphone. By comparison to state-of-the-art commercially-available velocity and pressure sensors, including the world???s smallest measurement microphone, the microsphere sensing modality is shown to be both accurate and to have superior sensitivity at high frequencies. Applications for such high-frequency acoustic sensing include dosage monitoring in proton therapy for cancer and event discrimination in bubble chamber searches for dark matter. In addition to reporting these scientific results, the thesis is pedagogically organized to present the relevant history, theory, and technology in a straightforward way
ISBN,Price9783031443329
Keyword(s)1. ACOUSTICS 2. ATOMS 3. EBOOK - SPRINGER 4. Light-Matter Interaction 5. MEASUREMENT 6. Measurement Science and Instrumentation 7. MEASURING INSTRUMENTS 8. METROLOGY 9. Metrology and Fundamental Constants 10. OPTICS 11. STATISTICAL PHYSICS
Item TypeeBook
Multi-Media Links
media link description
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I12905     On Shelf    

14.     
No image available
TitleEntropy and the Second Law of Thermodynamics : or Why Things Tend to Go Wrong and Seem to Get Worse
Author(s)Fleck, Robert
PublicationCham, 1. Imprint: Springer 2. Springer Nature Switzerland, 2023.
DescriptionXI, 130 p. 21 illus., 17 illus. in color : online resource
Abstract NoteThis book is a brief and accessible popular science text intended for a broad audience and of particular interest also to science students and specialists. Using a minimum of mathematics, a number of qualitative and quantitative examples, and clear illustrations, the author explains the science of thermodynamics in its full historical context, focusing on the concepts of energy and its availability and transformation in thermodynamic processes. His ultimate aim is to gain a deep understanding of the second law???the increase of entropy???and its rather disheartening message of a universe descending inexorably into chaos and disorder. It also examines the connection between the second law and why things go wrong in our daily lives. Readers will enhance their science literacy and feel more at home on the science side of author C. P. Snow's celebrated two-culture, science-humanities divide, and hopefully will feel more at home in the universe knowing that the disorder we deal with in our daily lives is not anyone's fault but Nature's.
ISBN,Price9783031349508
Keyword(s)1. EBOOK - SPRINGER 2. MATHEMATICS 3. Mathematics in the Humanities and Social Sciences 4. SOCIAL SCIENCES 5. Sociology 6. STATISTICAL MECHANICS 7. STATISTICAL PHYSICS 8. THERMODYNAMICS
Item TypeeBook
Multi-Media Links
media link description
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I12837     On Shelf    

15.     
No image available
TitleLectures on the Random Field Ising Model : From Parisi-Sourlas Supersymmetry to Dimensional Reduction
Author(s)Rychkov, Slava
PublicationCham, 1. Imprint: Springer 2. Springer Nature Switzerland, 2023.
DescriptionIX, 64 p. 23 illus : online resource
Abstract NoteThis book is about the Random Field Ising Model (RFIM) ??? a paradigmatic spin model featuring a frozen disordering field. The focus is on the second-order phase transition between the paramagnetic and ferromagnetic phases, and the associated critical exponents. The book starts by summarizing the current knowledge about the RFIM from experiments, numerical simulations and rigorous mathematical results. It then reviews the classic theoretical works from the 1970???s which suggested a property of dimensional reduction ??? that the RFIM critical exponents should be the same as for the ordinary, non-disordered, Ising model of lower dimensionality, and related this an emergent Parisi-Sourlas supersymmetry. As is now known, these remarkable properties only hold when the spatial dimensionality of the model is larger than a critical dimension. The book presents a method to estimate the critical dimension, using standard tools such as the replica trick and perturbative renormalization group, whose result is in agreement with the numerical simulations. Some more elementary steps in the derivations are left as exercises for the readers. This book is of interest to researchers, PhD students and advanced master students specializing in statistical field theory
ISBN,Price9783031420009
Keyword(s)1. EBOOK - SPRINGER 2. MATHEMATICAL PHYSICS 3. PARTICLE PHYSICS 4. PARTICLES (NUCLEAR PHYSICS) 5. STATISTICAL PHYSICS 6. Theoretical, Mathematical and Computational Physics
Item TypeeBook
Multi-Media Links
media link description
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I12821     On Shelf    

16.     
No image available
TitleDynamics, Information and Complexity in Quantum Systems
Author(s)Benatti, Fabio
PublicationCham, 1. Imprint: Springer 2. Springer International Publishing, 2023.
DescriptionXIV, 618 p. 21 illus : online resource
Abstract NoteThis second edition of Dynamics, Information and Complexity in Quantum Systems widens its scope by focussing more on the dynamics of quantum correlations and information in microscopic and mesoscopic systems, and their use for metrological and machine learning purposes. The book is divided into three parts: Part One: Classical Dynamical Systems Addresses classical dynamical systems, classical dynamical entropy, and classical algorithmic complexity. Includes a survey of the theory of simple perceptrons and their storage capacity. Part Two: Quantum Dynamical Systems Focuses on the dynamics of entanglement under dissipative dynamics and its metrological use in finite level quantum systems. Discusses the quantum fluctuation approach to large-scale mesoscopic systems and their emergent dynamics in quantum systems with infinitely many degrees of freedom. Introduces a model of quantum perceptron whose storage capacity is computed and compared with the classical one. Part Three: Quantum Dynamical Entropies and Complexities Devoted to quantum dynamical entropies and algorithmic complexities. This book is meant for advanced students, young and senior researchers working in the fields of quantum statistical mechanics, quantum information, and quantum dynamical systems. It is self-contained, and the only prerequisites needed are a standard knowledge of statistical mechanics, quantum mechanics, and linear operators on Hilbert spaces
ISBN,Price9783031342486
Keyword(s)1. COMPLEX SYSTEMS 2. DYNAMICAL SYSTEMS 3. EBOOK - SPRINGER 4. Quantum computing 5. QUANTUM INFORMATION 6. QUANTUM PHYSICS 7. STATISTICAL PHYSICS 8. SYSTEM THEORY
Item TypeeBook
Multi-Media Links
media link description
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I12811     On Shelf    

17.     
No image available
TitleNon-Fourier Heat Conduction : From Phase-Lag Models to Relativistic and Quantum Transport
Author(s)Zhmakin, Alexander I
PublicationCham, 1. Imprint: Springer 2. Springer International Publishing, 2023.
DescriptionIX, 422 p. 1 illus : online resource
Abstract NoteThis book presents a broad and well-structured overview of various non-Fourier heat conduction models. The classical Fourier heat conduction model is valid for most macroscopic problems. However, it fails when the wave nature of the heat propagation becomes dominant and memory or non-local spatial effects become significant; e.g., during ultrafast heating, heat transfer at the nanoscale, in granular and porous materials, at extremely high values of the heat flux, or in heat transfer in biological tissues. The book looks at numerous non-Fourier heat conduction models that incorporate time non-locality for materials with memory, such as hereditary materials, including fractional hereditary materials, and/or spatial non-locality, i.e. materials with a non-homogeneous inner structure. Beginning with an introduction to classical transport theory, including phase-lag, phonon, and thermomass models, the book then looks at various aspects of relativistic and quantum transport, including approaches based on the Landauer formalism as well as the Green-Kubo theory of linear response. Featuring an appendix that provides an introduction to methods in fractional calculus, this book is a valuable resource for any researcher interested in theoretical and numerical aspects of complex, non-trivial heat conduction problems
ISBN,Price9783031259739
Keyword(s)1. Classical and Continuum Physics 2. EBOOK - SPRINGER 3. Engineering Thermodynamics, Heat and Mass Transfer 4. Heat engineering 5. HEAT TRANSFER 6. MASS TRANSFER 7. Mathematical Methods in Physics 8. MATHEMATICAL PHYSICS 9. PHYSICS 10. Soft and Granular Matter 11. Soft condensed matter 12. STATISTICAL PHYSICS 13. THERMODYNAMICS
Item TypeeBook
Multi-Media Links
media link description
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I12781     On Shelf    

18.     
No image available
TitleStatistical Methods for Data Analysis : With Applications in Particle Physics
Author(s)Lista, Luca
PublicationCham, 1. Imprint: Springer 2. Springer International Publishing, 2023.
DescriptionXXX, 334 p. 1 illus : online resource
Abstract NoteThis third edition expands on the original material. Large portions of the text have been reviewed and clarified. More emphasis is devoted to machine learning including more modern concepts and examples. This book provides the reader with the main concepts and tools needed to perform statistical analyses of experimental data, in particular in the field of high-energy physics (HEP). It starts with an introduction to probability theory and basic statistics, mainly intended as a refresher from readers??? advanced undergraduate studies, but also to help them clearly distinguish between the Frequentist and Bayesian approaches and interpretations in subsequent applications. Following, the author discusses Monte Carlo methods with emphasis on techniques like Markov Chain Monte Carlo, and the combination of measurements, introducing the best linear unbiased estimator. More advanced concepts and applications are gradually presented, including unfolding and regularization procedures, culminating in the chapter devoted to discoveries and upper limits. The reader learns through many applications in HEP where the hypothesis testing plays a major role and calculations of look-elsewhere effect are also presented. Many worked-out examples help newcomers to the field and graduate students alike understand the pitfalls involved in applying theoretical concepts to actual data
ISBN,Price9783031199349
Keyword(s)1. Data Analysis and Big Data 2. EBOOK - SPRINGER 3. MACHINE LEARNING 4. PARTICLE PHYSICS 5. PARTICLES (NUCLEAR PHYSICS) 6. Quantitative research 7. STATISTICAL PHYSICS
Item TypeeBook
Multi-Media Links
media link description
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I12774     On Shelf    

19.     
No image available
TitleStochastic Mechanics : The Unification of Quantum Mechanics with Brownian Motion
Author(s)Kuipers, Folkert
PublicationCham, 1. Imprint: Springer 2. Springer Nature Switzerland, 2023.
DescriptionIX, 125 p. 1 illus : online resource
Abstract NoteStochastic mechanics is a theory that holds great promise in resolving the mathematical and interpretational issues encountered in the canonical and path integral formulations of quantum theories. It provides an equivalent formulation of quantum theories, but substantiates it with a mathematically rigorous stochastic interpretation by means of a stochastic quantization prescription. The book builds on recent developments in this theory, and shows that quantum mechanics can be unified with the theory of Brownian motion in a single mathematical framework. Moreover, it discusses the extension of the theory to curved spacetime using second order geometry, and the induced It?? deformations of the spacetime symmetries. The book is self-contained and provides an extensive review of stochastic mechanics of the single spinless particle. The book builds up the theory on a step by step basis. It starts, in chapter 2, with a review of the classical particle subjected to scalar and vector potentials. In chapter 3, the theory is extended to the study of a Brownian motion in any potential, by the introduction of a Gaussian noise. In chapter 4, the Gaussian noise is complexified. The result is a complex diffusion theory that contains both Brownian motion and quantum mechanics as a special limit. In chapters 5, the theory is extended to relativistic diffusion theories. In chapter 6, the theory is further generalized to the context of pseudo-Riemannian geometry. Finally, in chapter 7, some interpretational aspects of the stochastic theory are discussed in more detail. The appendices concisely review relevant notions from probability theory, stochastic processes, stochastic calculus, stochastic differential geometry and stochastic variational calculus. The book is aimed at graduate students and researchers in theoretical physics and applied mathematics with an interest in the foundations of quantum theory andBrownian motion. The book can be used as reference material for courses on and further research in stochastic mechanics, stochastic quantization, diffusion theories on curved spacetimes and quantum gravity
ISBN,Price9783031314483
Keyword(s)1. EBOOK - SPRINGER 2. Mathematical Methods in Physics 3. MATHEMATICAL PHYSICS 4. QUANTUM PHYSICS 5. STATISTICAL PHYSICS 6. STOCHASTIC PROCESSES
Item TypeeBook
Multi-Media Links
media link description
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I12720     On Shelf    

20.    
No image available
TitleThe Poisson-Boltzmann Equation : An Introduction
Author(s)Blossey, Ralf
PublicationCham, 1. Imprint: Springer 2. Springer International Publishing, 2023.
DescriptionXIV, 101 p. 20 illus., 16 illus. in color : online resource
Abstract NoteThis brief book introduces the Poisson-Boltzmann equation in three chapters that build upon one another, offering a systematic entry to advanced students and researchers. Chapter one formulates the equation and develops the linearized version of Debye-H??ckel theory as well as exact solutions to the nonlinear equation in simple geometries and generalizations to higher-order equations. Chapter two introduces the statistical physics approach to the Poisson-Boltzmann equation. It allows the treatment of fluctuation effects, treated in the loop expansion, and in a variational approach. First applications are treated in detail: the problem of the surface tension under the addition of salt, a classic problem discussed by Onsager and Samaras in the 1930s, which is developed in modern terms within the loop expansion, and the adsorption of a charged polymer on a like-charged surface within the variational approach. Chapter three finally discusses the extension of Poisson-Boltzmann theory to explicit solvent. This is done in two ways: on the phenomenological level of nonlocal electrostatics and with a statistical physics model that treats the solvent molecules as molecular dipoles. This model is then treated in the mean-field approximation and with the variational method introduced in Chapter two, rounding up the development of the mathematical approaches of Poisson-Boltzmann theory. After studying this book, a graduate student will be able to access the research literature on the Poisson-Boltzmann equation with a solid background.
ISBN,Price9783031247828
Keyword(s)1. DIFFERENTIAL EQUATIONS 2. EBOOK - SPRINGER 3. Electrochemistry 4. STATISTICAL PHYSICS 5. Surfaces (Technology) 6. Surfaces, Interfaces and Thin Film 7. THIN FILMS
Item TypeeBook
Multi-Media Links
media link description
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I12614     On Shelf    

(page:2 / 99) [#986] First Page   Previous Page   Next Page   Last Page