SLIM21

Sort Order Display Format Items / Page  
 
  Click the serial number on the left to view the details of the item.
 #  AuthorTitleAccn#YearItem Type Claims
1 Liu, Zheng-Hao Exploring Quantum Contextuality with Photons I12907 2023 eBook  
2 Benatti, Fabio Dynamics, Information and Complexity in Quantum Systems I12811 2023 eBook  
3 Meng, Xiang-Guo Entangled State Representations in Quantum Optics I12797 2023 eBook  
4 Kam, Chon-Fai Coherent States I12653 2023 eBook  
5 Matsuura, Takaya Digital Quantum Information Processing with Continuous-Variable Systems I12602 2023 eBook  
6 Wojcieszyn, Filip Introduction to Quantum Computing with Q# and QDK I12558 2022 Book  
7 Lakshmibala, S Nonclassical Effects and Dynamics of Quantum Observables I12454 2022 Book  
8 Steinberg, Jonathan Extensions and Restrictions of Generalized Probabilistic Theories I12394 2022 Book  
9 Reed, Bruce Cameron Quantum Mechanics I12346 2022 Book  
10 Osada, Alto Introduction to Quantum Technologies I12330 2022 Book  
(page:1 / 3) [#29]    Next Page   Last Page 

1.    
No image available
TitleExploring Quantum Contextuality with Photons
Author(s)Liu, Zheng-Hao
PublicationSingapore, 1. Imprint: Springer 2. Springer Nature Singapore, 2023.
DescriptionXXI, 156 p. 63 illus., 52 illus. in color : online resource
Abstract NoteThis thesis highlights research explorations in quantum contextuality with photons. Quantum contextuality is one of the most intriguing and peculiar predictions of quantum mechanics. It is also a cornerstone in modern quantum information science. It is the origin of the famous quantum nonlocality and various nonclassical paradoxes. It is also a resource for many quantum information processing tasks and even universal quantum computing. Therefore, the study of quantum contextuality not only advances the comprehension of the foundations of quantum physics, but also facilitates the practical applications of quantum information technology. In the last fifteen years, the study of quantum contextuality has developed from a purely theoretical level to a stage where direct experimental tests become amenable. However, the experimental research on contextuality at the current stage largely focuses on direct validations of some most famous predictions of contextuality, while other forms of contextuality and its practical applications in quantum information science are rarely involved. The research in this thesis is committed to bridge this gap from two directions: (1) to construct and test stronger forms of contextuality and relieve the requirements of contextuality experiments on experimental platforms, and (2) to explore the connections between contextuality and the other concepts in quantum information science and directly demonstrate the application of contextuality in broader scenarios. Specifically, the thesis have discussed the research topics about the relationship between quantum contextuality and nonlocality, the ???all-versus-nothing??? paradoxes from quantum contextuality, the ore- and post-selection paradoxes from quantum contextuality, and the topological protection and braiding dynamics of quantum contextuality in quasiparticle systems
ISBN,Price9789819961672
Keyword(s)1. ANGULAR MOMENTUM 2. Angular momentum of light 3. COMPUTER SIMULATION 4. EBOOK - SPRINGER 5. Fundamental concepts and interpretations of QM 6. Mathematical Methods in Physics 7. MATHEMATICAL PHYSICS 8. OPTICS 9. Quantum computing 10. Quantum Correlation and Entanglement 11. QUANTUM ENTANGLEMENT 12. QUANTUM INFORMATION 13. QUANTUM PHYSICS 14. Quantum Simulations
Item TypeeBook
Multi-Media Links
media link description
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I12907     On Shelf    

2.     
No image available
TitleDynamics, Information and Complexity in Quantum Systems
Author(s)Benatti, Fabio
PublicationCham, 1. Imprint: Springer 2. Springer International Publishing, 2023.
DescriptionXIV, 618 p. 21 illus : online resource
Abstract NoteThis second edition of Dynamics, Information and Complexity in Quantum Systems widens its scope by focussing more on the dynamics of quantum correlations and information in microscopic and mesoscopic systems, and their use for metrological and machine learning purposes. The book is divided into three parts: Part One: Classical Dynamical Systems Addresses classical dynamical systems, classical dynamical entropy, and classical algorithmic complexity. Includes a survey of the theory of simple perceptrons and their storage capacity. Part Two: Quantum Dynamical Systems Focuses on the dynamics of entanglement under dissipative dynamics and its metrological use in finite level quantum systems. Discusses the quantum fluctuation approach to large-scale mesoscopic systems and their emergent dynamics in quantum systems with infinitely many degrees of freedom. Introduces a model of quantum perceptron whose storage capacity is computed and compared with the classical one. Part Three: Quantum Dynamical Entropies and Complexities Devoted to quantum dynamical entropies and algorithmic complexities. This book is meant for advanced students, young and senior researchers working in the fields of quantum statistical mechanics, quantum information, and quantum dynamical systems. It is self-contained, and the only prerequisites needed are a standard knowledge of statistical mechanics, quantum mechanics, and linear operators on Hilbert spaces
ISBN,Price9783031342486
Keyword(s)1. COMPLEX SYSTEMS 2. DYNAMICAL SYSTEMS 3. EBOOK - SPRINGER 4. Quantum computing 5. QUANTUM INFORMATION 6. QUANTUM PHYSICS 7. STATISTICAL PHYSICS 8. SYSTEM THEORY
Item TypeeBook
Multi-Media Links
media link description
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I12811     On Shelf    

3.     
No image available
TitleEntangled State Representations in Quantum Optics
Author(s)Meng, Xiang-Guo;Wang, Ji-Suo;Liang, Bao-Long
PublicationSingapore, 1. Imprint: Springer 2. Springer Nature Singapore, 2023.
DescriptionIX, 283 p. 24 illus., 20 illus. in color : online resource
Abstract NoteThis book highlights the applications of continuous-variable entangled state representations in the research areas of quantum optics via the integration method within an ordered product of operators (IWOP). As a way to develop the Dirac???s symbolic method, the IWOP method has made the integration of non-commutative operators possible by arranging non-commutable operators within an ordered product symbol. It not only deals with many existent quantum optics problems but also explores new research fields. The book also establishes a theoretical framework for solving important quantum optics subjects by taking full advantage of the entangled state representations. With original methods and detailed descriptions, the book is suitable for researchers, instructors, and students interested in quantum mechanics, quantum optics, and quantum information science
ISBN,Price9789819923335
Keyword(s)1. EBOOK - SPRINGER 2. Quantum computing 3. Quantum Correlation and Entanglement 4. QUANTUM ENTANGLEMENT 5. QUANTUM INFORMATION 6. QUANTUM OPTICS 7. QUANTUM PHYSICS
Item TypeeBook
Multi-Media Links
media link description
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I12797     On Shelf    

4.     
No image available
TitleCoherent States : New Insights into Quantum Mechanics with Applications
Author(s)Kam, Chon-Fai;Zhang, Wei-Min;Feng, Da-Hsuan
PublicationCham, 1. Imprint: Springer 2. Springer International Publishing, 2023.
DescriptionXII, 351 p. 26 illus., 25 illus. in color : online resource
Abstract NoteThis book presents the essential ideas of coherent states and provides researchers and graduate students with the necessary tools for various applications of generalized coherent state theory. These applications include areas such as quantum information, quantum phase transitions, quantum many-body systems, quantum chaos, and quantum open systems. The aim of the book is to show how coherent states can be applied to an extensive range of physical systems. The authors provide many exercises at the end of each chapter to enhance the mastery of the subject. Throughout the first seven chapters, only an understanding of elementary quantum mechanics is assumed, and for the last six chapters, some basic knowledge of group theory is requested to follow the arguments.
ISBN,Price9783031207662
Keyword(s)1. Atomic, Molecular and Chemical Physics 2. ATOMS 3. CONDENSED MATTER 4. CONDENSED MATTER PHYSICS 5. EBOOK - SPRINGER 6. MOLECULES 7. Phase Transition and Critical Phenomena 8. Quantum computing 9. QUANTUM INFORMATION
Item TypeeBook
Multi-Media Links
media link description
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I12653     On Shelf    

5.     
No image available
TitleDigital Quantum Information Processing with Continuous-Variable Systems
Author(s)Matsuura, Takaya
PublicationSingapore, 1. Imprint: Springer 2. Springer Nature Singapore, 2023.
DescriptionXV, 160 p. 22 illus., 19 illus. in color : online resource
Abstract NoteThe book provides theoretical methods of connecting discrete-variable quantum information processing to continuous-variable one. It covers the two major fields of quantum information processing, quantum communication and quantum computation, leading to achievement of a long-sought full security of continuous-variable quantum key distribution (QKD) and proposal of a resource-efficient method for optical quantum computing. Firstly, the book provides a security of continuous-variable QKD against arbitrary attacks under a realistic condition such as finite communication rounds and the use of digitized information processing. The book also provides the unified view for conventionally used approximate Gottesman-Kitaev-Preskill (GKP) codes, which encodes qudits on a continuous-variable system, enabling direct comparison between researches based on different approximations. The book finally proposes a resource-efficient method to realize the universal optical quantum computation using the GKP code via the direct preparation of the GKP magic state instead of GKP Pauli states. Feasibility of the proposed protocol is discussed based on the existing experimental proposals for the GKP state preparation
ISBN,Price9789811982880
Keyword(s)1. EBOOK - SPRINGER 2. QUANTUM COMMUNICATION 3. Quantum Communications and Cryptography 4. QUANTUM COMPUTERS 5. Quantum computing 6. QUANTUM INFORMATION 7. Security Science and Technology 8. Security systems
Item TypeeBook
Multi-Media Links
media link description
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I12602     On Shelf    

6.     
No image available
TitleIntroduction to Quantum Computing with Q# and QDK
Author(s)Wojcieszyn, Filip
PublicationCham, 1. Imprint: Springer 2. Springer International Publishing, 2022.
DescriptionXVI, 280 p. 57 illus., 8 illus. in color : online resource
Abstract NoteThis book introduces the fundamentals of the theory of quantum computing, illustrated with code samples written in Q#, a quantum-specific programming language, and its related Quantum Development Kit. Quantum computing (QC) is a multidisciplinary field that sits at the intersection of quantum physics, quantum information theory, computer science and mathematics, and which may revolutionize the world of computing and software engineering. The book begins by covering historical aspects of quantum theory and quantum computing, as well as offers a gentle, algebra-based, introduction to quantum mechanics, specifically focusing on concepts essential for the field of quantum programming. Quantum state description, state evolution, quantum measurement and the Bell???s theorem are among the topics covered. The readers also get a tour of the features of Q# and familiarize themselves with the QDK. Next, the core QC topics are discussed, complete with the necessary mathematical formalism. This includes the notions of qubit, quantum gates and quantum circuits. In addition to that, the book provides a detailed treatment of a series of important concepts from quantum information theory, in particular entanglement and the no-cloning theorem, followed by discussion about quantum key distribution and its various protocols. Finally, the canon of most important QC algorithms and algorithmic techniques is covered in-depth - from the Deutsch-Jozsa algorithm, through Grover???s search, to Quantum Fourier Transform, quantum phase estimation and Shor???s algorithm. The book is an accessible introduction into the vibrant and fascinating field of quantum computing, offering a blend of academic diligence with pragmatism that is so central to software development world. All of the discussed theoretical aspects of QC are accompanied by runnable code examples, providing the reader with two different angles - mathematical and programmatic - of looking at the same problem space.
ISBN,Price9783030993795
Keyword(s)1. Computational Mathematics and Numerical Analysis 2. EBOOK 3. EBOOK - SPRINGER 4. Mathematics???Data processing 5. Microsoft 6. Microsoft .NET Framework 7. Microsoft software 8. PROGRAMMING LANGUAGE 9. Programming languages (Electronic computers) 10. QUANTUM COMPUTERS 11. Quantum computing 12. QUANTUM INFORMATION
Item TypeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I12558     On Shelf    

7.     
No image available
TitleNonclassical Effects and Dynamics of Quantum Observables
Author(s)Lakshmibala, S;Balakrishnan, V
PublicationCham, 1. Imprint: Springer 2. Springer International Publishing, 2022.
DescriptionXI, 130 p. 51 illus., 44 illus. in color : online resource
Abstract NoteThis book explores interesting possibilities of extracting information about quantum states from data readily obtained from experiments, such as tomograms and expectation values of appropriate observables. The procedures suggested for identifying nonclassical e???ects such as wave packet revivals, squeezing and entanglement solely from tomograms circumvent detailed state reconstruction. Several bipartite entanglement indicators are de???ned based on tomograms, and their e???cacy assessed in models of atom-???eld interactions and qubit systems. Tools of classical ergodic theory such as time series and network analysis are applied to quantum observables treated as dynamical variables. This brings out novel aspects involving di???erent time scales. The book is aimed at researchers in the areas of quantum optics and quantum dynamics
ISBN,Price9783031194146
Keyword(s)1. DYNAMICAL SYSTEMS 2. EBOOK 3. EBOOK - SPRINGER 4. Quantum computing 5. QUANTUM INFORMATION 6. QUANTUM OPTICS 7. QUANTUM PHYSICS
Item TypeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I12454     On Shelf    

8.     
No image available
TitleExtensions and Restrictions of Generalized Probabilistic Theories
Author(s)Steinberg, Jonathan
PublicationWiesbaden, 1. Imprint: Springer Spektrum 2. Springer Fachmedien Wiesbaden, 2022.
DescriptionVIII, 79 p. 5 illus : online resource
Abstract NoteGeneralized probabilistic theories (GPTs) allow us to write quantum theory in a purely operational language and enable us to formulate other, vastly different theories. As it turns out, there is no canonical way to integrate the notion of subsystems within the framework of convex operational theories. Sections can be seen as generalization of subsystems and describe situations where not all possible observables can be implemented. Jonathan Steinberg discusses the mathematical foundations of GPTs using the language of Archimedean order unit spaces and investigates the algebraic nature of sections. This includes an analysis of the category theoretic structure and the transformation properties of the state space. Since the Hilbert space formulation of quantum mechanics uses tensor products to describe subsystems, he shows how one can interpret the tensor product as a special type of a section. In addition he applies this concept to quantum theory and compares it with the formulation in the algebraic approach. Afterwards he gives a complete characterization of low dimensional sections of arbitrary quantum systems using the theory of matrix pencils. About the author Jonathan Steinberg studied physics and mathematics at the university of Siegen and obtained his M. Sc. in the field of quantum foundations. Currently he investigates the relation between tensor eigenvalues and the quantification of multipartite entanglement under the tutelage of Prof. Otfried G??hne
ISBN,Price9783658375812
Keyword(s)1. EBOOK 2. EBOOK - SPRINGER 3. Quantum computing 4. QUANTUM INFORMATION 5. QUANTUM PHYSICS
Item TypeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I12394     On Shelf    

9.     
No image available
TitleQuantum Mechanics : An Enhanced Primer
Author(s)Reed, Bruce Cameron
PublicationCham, 1. Imprint: Springer 2. Springer International Publishing, 2022.
DescriptionXIII, 401 p. 84 illus., 3 illus. in color : online resource
Abstract NoteQuantum mechanics is one of the most fascinating elements of the physics curriculum, but its conceptual nuances and mathematical complexity can be daunting for beginning students. This user-friendly text is designed for a one-semester course which bridges the gap between sophomore-level treatments and advanced undergraduate/lower-graduate courses. Qualitative explanations and descriptions of historical background are combined with detailed mathematical analyses to help students establish a firm foundation for further study. Classical problems such potential wells, barrier penetration, alpha decay, the harmonic oscillator, and the hydrogen atom are examined in detail, and formalisms and techniques such as operators, expectation values, commutators, perturbation theory, numerical solutions, and the variational theorem are also covered. Particular emphasis is placed on providing numerous worked examples and exercises
ISBN,Price9783031140204
Keyword(s)1. EBOOK 2. EBOOK - SPRINGER 3. History of Physics and Astronomy 4. MATHEMATICAL PHYSICS 5. Philosophical Foundations of Physics and Astronomy 6. Physics???History 7. Physics???Philosophy 8. Quantum computing 9. QUANTUM INFORMATION 10. QUANTUM PHYSICS 11. Theoretical, Mathematical and Computational Physics
Item TypeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I12346     On Shelf    

10.    
No image available
TitleIntroduction to Quantum Technologies
Author(s)Osada, Alto;Yamazaki, Rekishu;Noguchi, Atsushi
PublicationSingapore, 1. Imprint: Springer 2. Springer Nature Singapore, 2022.
DescriptionXV, 298 p. 102 illus., 68 illus. in color : online resource
Abstract NoteThis book is a concise primer of quantum technology aiming at providing a comprehensive material of fundamentals to help beginners understand the common concepts and background theories to technologies for individual quantum systems. Further, it also describes how the concepts and theories are applied to technologies in various systems. This book consists of three parts. The first part looks back over basics of quantum mechanics necessary for the main content, including quantum state and operators, time evolution and perturbation theory. The second part explains in detail key components indispensable to follow quantum technologies: two-level systems, harmonic oscillator and cavity quantum electrodynamics and resonators. In the third part, the physical quantum systems are treated in a more abstract way by introducing quantum logic gates, quantum measurement and quantum error correction. Technical supplements are included in Appendices. The well-compiled topics and concise presentation feature the book as a supplemental primer in the courses of quantum technologies including quantum computing, quantum communication, quantum sensing and quantum simulation.
ISBN,Price9789811946417
Keyword(s)1. EBOOK 2. EBOOK - SPRINGER 3. QUANTUM COMMUNICATION 4. Quantum Communications and Cryptography 5. QUANTUM COMPUTERS 6. Quantum computing 7. Quantum Imaging and Sensing 8. QUANTUM INFORMATION 9. Quantum Measurement and Metrology 10. QUANTUM OPTICS 11. QUANTUM PHYSICS
Item TypeBook
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession#  Call#StatusIssued ToReturn Due On Physical Location
I12330     On Shelf    

(page:1 / 3) [#29]    Next Page   Last Page