|
|
Click the serial number on the left to view the details of the item. |
# |
Author | Title | Accn# | Year | Item Type | Claims |
1 |
Kenkre, V. M. (Nitant) |
Interplay of Quantum Mechanics and Nonlinearity |
I12518 |
2022 |
Book |
|
2 |
Helal, Mohamed Atef |
Solitons |
I12321 |
2022 |
Book |
|
3 |
Yaghjian, Arthur D |
Relativistic Dynamics of a Charged Sphere |
I12221 |
2022 |
Book |
|
4 |
Luo, Albert C. J |
Two-Dimensional Quadratic Nonlinear Systems |
I11975 |
2021 |
eBook |
|
5 |
Boos, Jens |
Effects of Non-locality in Gravity and Quantum Theory |
I11881 |
2021 |
eBook |
|
6 |
Zhu, Yichao |
Equations and Analytical Tools in Mathematical Physics |
I11851 |
2021 |
eBook |
|
7 |
??chsner, Andreas |
Classical Beam Theories of Structural Mechanics |
I11828 |
2021 |
eBook |
|
8 |
Yoshida, Kentaroh |
Yang???Baxter Deformation of 2D Non-Linear Sigma Models |
I11819 |
2021 |
eBook |
|
9 |
Marinca, Vasile |
Optimal Auxiliary Functions Method for Nonlinear Dynamical Systems |
I11650 |
2021 |
eBook |
|
10 |
Grigorieva, Elena V |
Asymptotic Representation of Relaxation Oscillations in Lasers |
I10175 |
2017 |
eBook |
|
|
1.
|
 |
Title | Interplay of Quantum Mechanics and Nonlinearity : Understanding Small-System Dynamics of the Discrete Nonlinear Schr??dinger Equation |
Author(s) | Kenkre, V. M. (Nitant) |
Publication | Cham, 1. Imprint: Springer
2. Springer International Publishing, 2022. |
Description | XXVI, 310 p. 114 illus., 34 illus. in color : online resource |
Abstract Note | This book presents an in-depth study of the discrete nonlinear Schr??dinger equation (DNLSE), with particular emphasis on spatially small systems that permit analytic solutions. In many quantum systems of contemporary interest, the DNLSE arises as a result of approximate descriptions despite the fundamental linearity of quantum mechanics. Such scenarios, exemplified by polaron physics and Bose-Einstein condensation, provide application areas for the theoretical tools developed in this text. The book begins with an introduction of the DNLSE illustrated with the dimer, development of fundamental analytic tools such as elliptic functions, and the resulting insights into experiment that they allow. Subsequently, the interplay of the initial quantum phase with nonlinearity is studied, leading to novel phenomena with observable implications in fields such as fluorescence depolarization of stick dimers, followed by analysis of more complex and/or larger systems. Specific examples analyzed in the book include the nondegenerate nonlinear dimer, nonlinear trapping, rotational polarons, and the nonadiabatic nonlinear dimer. Phenomena treated include strong carrier-phonon interactions and Bose-Einstein condensation. This book is aimed at researchers and advanced graduate students, with chapter summaries and problems to test the reader???s understanding, along with an extensive bibliography. The book will be essential reading for researchers in condensed matter and low-temperature atomic physics, as well as any scientist who wants fascinating insights into the role of nonlinearity in quantum physics |
ISBN,Price | 9783030948115 |
Keyword(s) | 1. Bose-Einstein Condensate
2. BOSE-EINSTEIN CONDENSATION
3. DIFFERENTIAL EQUATIONS
4. DYNAMICAL SYSTEMS
5. EBOOK
6. EBOOK - SPRINGER
7. Electronic materials
8. Electronics???Materials
9. MATHEMATICAL PHYSICS
10. QUANTUM PHYSICS
|
Item Type | Book |
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession# | |
Call# | Status | Issued To | Return Due On | Physical Location |
I12518 |
|
|
On Shelf |
|
|
|
|
2.
|
 |
Title | Solitons |
Author(s) | Helal, Mohamed Atef |
Publication | New York, NY, 1. Imprint: Springer
2. Springer US, 2022. |
Description | 151 illus., 112 illus. in color. eReference : online resource |
Abstract Note | This newly updated volume of the Encyclopedia of Complexity and Systems Science (ECSS) presents several mathematical models that describe this physical phenomenon, including the famous non-linear equation Korteweg-de-Vries (KdV) that represents the canonical form of solitons. Also, there exists a class of nonlinear partial differential equations that led to solitons, e.g., Kadomtsev-Petviashvili (KP), Klein-Gordon (KG), Sine-Gordon (SG), Non-Linear Schr??dinger (NLS), Korteweg-de-Vries Burger???s (KdVB), etc. Different linear mathematical methods can be used to solve these models analytically, such as the Inverse Scattering Transformation (IST), Adomian Decomposition Method, Variational Iteration Method (VIM), Homotopy Analysis Method (HAM) and Homotopy Perturbation Method (HPM). Other non-analytic methods use the computational techniques available in such popular mathematical packages as Mathematica, Maple, and MATLAB. The main purpose of this volume is to provide physicists, engineers, and their students with the proper methods and tools to solve the soliton equations, and to discover the new possibilities of using solitons in multi-disciplinary areas ranging from telecommunications to biology, cosmology, and oceanographic studies |
ISBN,Price | 9781071624579 |
Keyword(s) | 1. DIFFERENTIAL EQUATIONS
2. EBOOK
3. EBOOK - SPRINGER
4. Engineering Fluid Dynamics
5. ENVIRONMENTAL PHYSICS
6. ENVIRONMENTAL SCIENCES
7. FLUID MECHANICS
8. Mathematical Methods in Physics
9. MATHEMATICAL PHYSICS
10. PHYSICS
11. PLASMA WAVES
12. Waves, instabilities and nonlinear plasma dynamics
|
Item Type | Book |
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession# | |
Call# | Status | Issued To | Return Due On | Physical Location |
I12321 |
|
|
On Shelf |
|
|
|
|
3.
|
 |
Title | Relativistic Dynamics of a Charged Sphere : Updating the Lorentz-Abraham Model |
Author(s) | Yaghjian, Arthur D |
Publication | Cham, 1. Imprint: Springer
2. Springer International Publishing, 2022. |
Description | XVII, 207 p. 19 illus., 17 illus. in color : online resource |
Abstract Note | This book takes a fresh, systematic approach to determining the equation of motion for the classical model of the electron introduced by Lorentz 130 years ago. The original derivations of Lorentz, Abraham, Poincar??, and Schott are modified and generalized for the charged insulator model of the electron to obtain an equation of motion consistent with causal solutions to the Maxwell-Lorentz equations and the equations of special relativity. The solutions to the resulting equation of motion are free of pre-acceleration and pre-deceleration. The generalized method is applied to obtain the causal solution to the equation of motion of a charge accelerating in a uniform electric field for a finite time interval. Alternative derivations of the Landau-Lifshitz approximation are given as well as necessary and sufficient conditions for the Landau-Lifshitz approximation to be an accurate solution to the exact Lorentz-Abraham-Dirac equation of motion. Binding forces and a total stress-momentum-energy tensor are derived for the charged insulator model. Appendices provide simplified derivations of the self-force and power at arbitrary velocity. In this third edition, some of the history has been made more accurate and some of the derivations have been simplified and clarified. A detailed three-vector exact solution to the Landau-Lifshitz approximate equation of motion is given for the problem of an electron traveling in a counterpropagating plane-wave laser-beam pulse. Semi-classical analyses are used to derive the conditions that determine the significance of quantum effects not included in the classical equation of motion. The book is a valuable resource for students and researchers in physics, engineering, and the history of science |
ISBN,Price | 9783031060670 |
Keyword(s) | 1. Accelerator Physics
2. CLASSICAL ELECTRODYNAMICS
3. CLASSICAL MECHANICS
4. DIFFERENTIAL EQUATIONS
5. EBOOK
6. EBOOK - SPRINGER
7. ELECTRODYNAMICS
8. MATHEMATICAL PHYSICS
9. MECHANICS
10. PARTICLE ACCELERATORS
11. SPECIAL RELATIVITY
12. Special relativity (Physics)
|
Item Type | Book |
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession# | |
Call# | Status | Issued To | Return Due On | Physical Location |
I12221 |
|
|
On Shelf |
|
|
|
|
5.
|
 |
Title | Effects of Non-locality in Gravity and Quantum Theory |
Author(s) | Boos, Jens |
Publication | Cham, Springer International Publishing, 2021. |
Description | XIX, 210 p. 37 illus., 33 illus. in color : online resource |
Abstract Note | This thesis is devoted to the systematic study of non-local theories that respect Lorentz invariance and are devoid of new, unphysical degrees of freedom. Such theories are attractive for phenomenological applications since they are mostly unconstrained by current experiments. Non-locality has played an increasingly important role in the physics of the last decades, appearing in effective actions in quantum field theory, and arising naturally in string theory and non-commutative geometry. It may even be a necessary ingredient for quantum theories of gravity. It is a feature of quantum entanglement, and may even solve the long-standing black hole information loss problem. ???Non-locality??? is a broad concept with many promising and fruitful applications in theoretical and mathematical physics. After a historical and pedagogical introduction into the concept of non-locality the author develops the notion of non-local Green functions to study various non-local weak-field problems in quantum mechanics, quantum field theory, gravity, and quantum field theory in curved spacetime. This thesis fills a gap in the literature by providing a self-contained exploration of weak-field effects in non-local theories, thereby establishing a ???non-local intuition??? which may serve as a stepping stone for studies of the full, non-linear problem of non-locality |
ISBN,Price | 9783030829100 |
Keyword(s) | 1. Classical and Quantum Gravity
2. DIFFERENTIAL EQUATIONS
3. EBOOK
4. EBOOK - SPRINGER
5. Fundamental concepts and interpretations of QM
6. GRAVITATION
7. MATHEMATICAL PHYSICS
8. QUANTUM PHYSICS
|
Item Type | eBook |
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession# | |
Call# | Status | Issued To | Return Due On | Physical Location |
I11881 |
|
|
On Shelf |
|
|
|
|
6.
|
 |
Title | Equations and Analytical Tools in Mathematical Physics : A Concise Introduction |
Author(s) | Zhu, Yichao |
Publication | Singapore, Springer Nature Singapore, 2021. |
Description | XII, 252 p. 37 illus., 29 illus. in color : online resource |
Abstract Note | This book highlights a concise and readable introduction to typical treatments of partial differential equations in mathematical physics. Mathematical physics is regarded by many as a profound discipline. In conventional textbooks of mathematical physics, the known and the new pieces of knowledge often intertwine with each other. The book aims to ease readers' struggle by facilitating a smooth transition to new knowledge. To achieve so, the author designs knowledge maps before each chapter and provides comparative summaries in each chapter whenever appropriate. Through these unique ways, readers can clarify the underlying structures among different equations and extend one's vision to the big picture. The book also emphasizes applications of the knowledge by providing practical examples. The book is intended for all those interested in mathematical physics, enabling them to develop a solid command in using partial differential equations to solve physics and engineering problems in a not-so-painful learning experience |
ISBN,Price | 9789811654411 |
Keyword(s) | 1. Applications of Mathematics
2. DIFFERENTIAL EQUATIONS
3. EBOOK
4. EBOOK - SPRINGER
5. Mathematical Methods in Physics
6. MATHEMATICAL PHYSICS
7. MATHEMATICS
|
Item Type | eBook |
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession# | |
Call# | Status | Issued To | Return Due On | Physical Location |
I11851 |
|
|
On Shelf |
|
|
|
|
7.
|
 |
Title | Classical Beam Theories of Structural Mechanics |
Author(s) | ??chsner, Andreas |
Publication | Cham, Springer International Publishing, 2021. |
Description | XIII, 186 p. 160 illus., 70 illus. in color : online resource |
Abstract Note | This book provides a systematic and thorough overview of the classical bending members based on the theory for thin beams (shear-rigid) according to Euler-Bernoulli, and the theories for thick beams (shear-flexible) according to Timoshenko and Levinson. The understanding of basic, i.e., one-dimensional structural members, is essential in applied mechanics. A systematic and thorough introduction to the theoretical concepts for one-dimensional members keeps the requirements on engineering mathematics quite low, and allows for a simpler transfer to higher-order structural members. The new approach in this textbook is that it treats single-plane bending in the x-y plane as well in the x-z plane equivalently and applies them to the case of unsymmetrical bending. The fundamental understanding of these one-dimensional members allows a simpler understanding of thin and thick plate bending members. Partial differential equations lay the foundation to mathematically describe the mechanical behavior of all classical structural members known in engineering mechanics. Based on the three basic equations of continuum mechanics, i.e., the kinematics relationship, the constitutive law, and the equilibrium equation, these partial differential equations that describe the physical problem can be derived. Nevertheless, the fundamental knowledge from the first years of engineering education, i.e., higher mathematics, physics, materials science, applied mechanics, design, and programming skills, might be required to master this topic |
ISBN,Price | 9783030760359 |
Keyword(s) | 1. CONTINUUM MECHANICS
2. DIFFERENTIAL EQUATIONS
3. EBOOK
4. EBOOK - SPRINGER
5. Mechanics, Applied
6. Solid Mechanics
7. SOLIDS
|
Item Type | eBook |
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession# | |
Call# | Status | Issued To | Return Due On | Physical Location |
I11828 |
|
|
On Shelf |
|
|
|
|
8.
|
 |
Title | Yang???Baxter Deformation of 2D Non-Linear Sigma Models : Towards Applications to AdS/CFT |
Author(s) | Yoshida, Kentaroh |
Publication | Singapore, Springer Nature Singapore, 2021. |
Description | XII, 70 p. 2 illus : online resource |
Abstract Note | In mathematical physics, one of the fascinating issues is the study of integrable systems. In particular, non-perturbative techniques that have been developed have triggered significant insight for real physics. There are basically two notions of integrability: classical integrability and quantum integrability. In this book, the focus is on the former, classical integrability. When the system has a finite number of degrees of freedom, it has been well captured by the Arnold???Liouville theorem. However, when the number of degrees of freedom is infinite, as in classical field theories, the integrable structure is enriched profoundly. In fact, the study of classically integrable field theories has a long history and various kinds of techniques, including the classical inverse scattering method, which have been developed so far. In previously published books, these techniques have been collected and well described and are easy to find in traditional, standard textbooks. One of the intriguing subjects in classically integrable systems is the investigation of deformations preserving integrability. Usually, it is not considered systematic to perform such a deformation, and one must study systems case by case and show the integrability of the deformed systems by constructing the associated Lax pair or action-angle variables. Recently, a new, systematic method to perform integrable deformations of 2D non-linear sigma models was developed. It was invented by C. Klimcik in 2002, and the integrability of the deformed sigma models was shown in 2008. The original work was done for 2D principal chiral models, but it has been generalized in various directions nowadays. In this book, the recent progress on this Yang???Baxter deformation is described in a pedagogical manner, including some simple examples. Applications of Yang???Baxter deformation to string theory are also described briefly. |
ISBN,Price | 9789811617034 |
Keyword(s) | 1. DIFFERENTIAL EQUATIONS
2. EBOOK
3. EBOOK - SPRINGER
4. MATHEMATICAL PHYSICS
5. SPECIAL FUNCTIONS
|
Item Type | eBook |
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession# | |
Call# | Status | Issued To | Return Due On | Physical Location |
I11819 |
|
|
On Shelf |
|
|
|
|
9.
|
 |
Title | Optimal Auxiliary Functions Method for Nonlinear Dynamical Systems |
Author(s) | Marinca, Vasile;Herisanu, Nicolae;Marinca, Bogdan |
Publication | Cham, Springer International Publishing, 2021. |
Description | XIII, 479 p. 442 illus., 414 illus. in color : online resource |
Abstract Note | This book presents the optimal auxiliary functions method and applies it to various engineering problems and in particular in boundary layer problems. The cornerstone of the presented procedure is the concept of ???optimal auxiliary functions??? which are needed to obtain accurate results in an efficient way. Unlike other known analytic approaches, this procedure provides us with a simple but rigorous way to control and adjust the convergence of the solutions of nonlinear dynamical systems. The optimal auxiliary functions are depending on some convergence-control parameters whose optimal values are rigorously determined from mathematical point of view. The capital strength of our procedure is its fast convergence, since after only one iteration, we obtain very accurate analytical solutions which are very easy to be verified. Moreover, no simplifying hypothesis or assumptions are made. The book contains a large amount of practical models from various fields of engineering such as classical and fluid mechanics, thermodynamics, nonlinear oscillations, electrical machines, and many more. The book is a continuation of our previous books ???Nonlinear Dynamical Systems in Engineering. Some Approximate Approaches???, Springer-2011 and ???The Optimal Homotopy Asymptotic Method. Engineering Applications???, Springer-2015 |
ISBN,Price | 9783030756536 |
Keyword(s) | 1. DIFFERENTIAL EQUATIONS
2. EBOOK
3. EBOOK - SPRINGER
4. Engineering Fluid Dynamics
5. FLUID MECHANICS
6. FLUIDS
7. Soft condensed matter
8. Surfaces (Technology)
9. Surfaces, Interfaces and Thin Film
10. THERMODYNAMICS
11. THIN FILMS
|
Item Type | eBook |
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession# | |
Call# | Status | Issued To | Return Due On | Physical Location |
I11650 |
|
|
On Shelf |
|
|
|
|
10.
|  |
Title | Asymptotic Representation of Relaxation Oscillations in Lasers |
Author(s) | Grigorieva, Elena V;Kaschenko, Sergey A |
Publication | Cham, Springer International Publishing, 2017. |
Description | VIII, 230 p. 73 illus : online resource |
Abstract Note | In this book we analyze relaxation oscillations in models of lasers with nonlinear elements controlling light dynamics. The models are based on rate equations taking into account periodic modulation of parameters, optoelectronic delayed feedback, mutual coupling between lasers, intermodal interaction and other factors. With the aim to study relaxation oscillations we present the special asymptotic method of integration for ordinary differential equations and differential-difference equations. As a result, they are reduced to discrete maps. Analyzing the maps we describe analytically such nonlinear phenomena in lasers as multistability of large-amplitude relaxation cycles, bifurcations of cycles, controlled switching of regimes, phase synchronization in an ensemble of coupled systems and others. The book can be fruitful for students and technicians in nonlinear laser dynamics and in differential equations |
ISBN,Price | 9783319428604 |
Keyword(s) | 1. DIFFERENTIAL EQUATIONS
2. EBOOK
3. EBOOK - SPRINGER
4. Engineering Fluid Dynamics
5. FLUID MECHANICS
6. LASERS
7. MATHEMATICAL PHYSICS
8. Optics, Lasers, Photonics, Optical Devices
9. ORDINARY DIFFERENTIAL EQUATIONS
10. PHOTONICS
11. Theoretical, Mathematical and Computational Physics
|
Item Type | eBook |
Multi-Media Links
Please Click here for eBook
Circulation Data
Accession# | |
Call# | Status | Issued To | Return Due On | Physical Location |
I10175 |
|
|
On Shelf |
|
|
|
| |